skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Abstract

We report a method to convert discrete representations of molecules to and from a multidimensional continuous representation. This model allows us to generate new molecules for efficient exploration and optimization through open-ended spaces of chemical compounds. A deep neural network was trained on hundreds of thousands of existing chemical structures to construct three coupled functions: an encoder, a decoder, and a predictor. The encoder converts the discrete representation of a molecule into a real-valued continuous vector, and the decoder converts these continuous vectors back to discrete molecular representations. The predictor estimates chemical properties from the latent continuous vector representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical structures, or interpolating between molecules. Continuous representations also allow the use of powerful gradient-based optimization to efficiently guide the search for optimized functional compounds. We demonstrate our method in the domain of drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4];  [2]; ORCiD logo [2];  [1];  [1];  [5]; ORCiD logo [6]
  1. Kyulux North America Inc., 10 Post Office Square, Suite 800, Boston, Massachusetts 02109, United States
  2. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
  3. Department of Computer Science, University of Toronto, 6 King’s College Road, Toronto, Ontario M5S 3H5, Canada
  4. Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
  5. Google Brain, Mountain View, California, United States, Princeton University, Princeton, New Jersey, United States
  6. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States, Biologically-Inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5S 1M1, Canada
Publication Date:
Research Org.:
Harvard Univ., Cambridge, MA (United States); Univ. of Toronto, ON (Canada)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1416858
Alternate Identifier(s):
OSTI ID: 1498675
Grant/Contract Number:  
SC0015959
Resource Type:
Published Article
Journal Name:
ACS Central Science
Additional Journal Information:
Journal Name: ACS Central Science Journal Volume: 4 Journal Issue: 2; Journal ID: ISSN 2374-7943
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Gómez-Bombarelli, Rafael, Wei, Jennifer N., Duvenaud, David, Hernández-Lobato, José Miguel, Sánchez-Lengeling, Benjamín, Sheberla, Dennis, Aguilera-Iparraguirre, Jorge, Hirzel, Timothy D., Adams, Ryan P., and Aspuru-Guzik, Alán. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. United States: N. p., 2018. Web. https://doi.org/10.1021/acscentsci.7b00572.
Gómez-Bombarelli, Rafael, Wei, Jennifer N., Duvenaud, David, Hernández-Lobato, José Miguel, Sánchez-Lengeling, Benjamín, Sheberla, Dennis, Aguilera-Iparraguirre, Jorge, Hirzel, Timothy D., Adams, Ryan P., & Aspuru-Guzik, Alán. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. United States. https://doi.org/10.1021/acscentsci.7b00572
Gómez-Bombarelli, Rafael, Wei, Jennifer N., Duvenaud, David, Hernández-Lobato, José Miguel, Sánchez-Lengeling, Benjamín, Sheberla, Dennis, Aguilera-Iparraguirre, Jorge, Hirzel, Timothy D., Adams, Ryan P., and Aspuru-Guzik, Alán. Fri . "Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules". United States. https://doi.org/10.1021/acscentsci.7b00572.
@article{osti_1416858,
title = {Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules},
author = {Gómez-Bombarelli, Rafael and Wei, Jennifer N. and Duvenaud, David and Hernández-Lobato, José Miguel and Sánchez-Lengeling, Benjamín and Sheberla, Dennis and Aguilera-Iparraguirre, Jorge and Hirzel, Timothy D. and Adams, Ryan P. and Aspuru-Guzik, Alán},
abstractNote = {We report a method to convert discrete representations of molecules to and from a multidimensional continuous representation. This model allows us to generate new molecules for efficient exploration and optimization through open-ended spaces of chemical compounds. A deep neural network was trained on hundreds of thousands of existing chemical structures to construct three coupled functions: an encoder, a decoder, and a predictor. The encoder converts the discrete representation of a molecule into a real-valued continuous vector, and the decoder converts these continuous vectors back to discrete molecular representations. The predictor estimates chemical properties from the latent continuous vector representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical structures, or interpolating between molecules. Continuous representations also allow the use of powerful gradient-based optimization to efficiently guide the search for optimized functional compounds. We demonstrate our method in the domain of drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.},
doi = {10.1021/acscentsci.7b00572},
journal = {ACS Central Science},
number = 2,
volume = 4,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acscentsci.7b00572

Citation Metrics:
Cited by: 85 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) A diagram of the autoencoder used for molecular design, including the joint property prediction model. Starting from a discrete molecular representation, such as a SMILES string, the encoder network converts each molecule into a vector in the latent space, which is effectively a continuous molecular representation. Givenmore » a point in the latent space, the decoder network produces a corresponding SMILES string. A mutilayer perceptron network estimates the value of target properties associated with each molecule. (b) Gradient-based optimization in continuous latent space. After training a surrogate model f(z) to predict the properties of molecules based on their latent representation z, we can optimize f(z) with respect to z to find new latent representations expected to have high values of desired properties. These new latent representations can then be decoded into SMILES strings, at which point their properties can be tested empirically.« less

Save / Share:

Works referencing / citing this record:

Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
journal, May 2019


Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
journal, June 2019


Accelerating the discovery of materials for clean energy in the era of smart automation
journal, April 2018

  • Tabor, Daniel P.; Roch, Loïc M.; Saikin, Semion K.
  • Nature Reviews Materials, Vol. 3, Issue 5
  • DOI: 10.1038/s41578-018-0005-z

Controlling an organic synthesis robot with machine learning to search for new reactivity
journal, July 2018


Extensive deep neural networks for transferring small scale learning to large scale systems
journal, January 2019

  • Mills, Kyle; Ryczko, Kevin; Luchak, Iryna
  • Chemical Science, Vol. 10, Issue 15
  • DOI: 10.1039/c8sc04578j

Multi-channel PINN: investigating scalable and transferable neural networks for drug discovery
journal, July 2019


Exploring differential evolution for inverse QSAR analysis
journal, January 2017


Challenges and opportunities of polymer design with machine learning and high throughput experimentation
journal, May 2019

  • Kumar, Jatin N.; Li, Qianxiao; Jun, Ye
  • MRS Communications, Vol. 9, Issue 02
  • DOI: 10.1557/mrc.2019.54

Efficient multi-objective molecular optimization in a continuous latent space
journal, January 2019

  • Winter, Robin; Montanari, Floriane; Steffen, Andreas
  • Chemical Science, Vol. 10, Issue 34
  • DOI: 10.1039/c9sc01928f

A quantitative uncertainty metric controls error in neural network-driven chemical discovery
journal, January 2019

  • Janet, Jon Paul; Duan, Chenru; Yang, Tzuhsiung
  • Chemical Science, Vol. 10, Issue 34
  • DOI: 10.1039/c9sc02298h

KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images
journal, June 2019


A de novo molecular generation method using latent vector based generative adversarial network
journal, December 2019

  • Prykhodko, Oleksii; Johansson, Simon Viet; Kotsias, Panagiotis-Christos
  • Journal of Cheminformatics, Vol. 11, Issue 1
  • DOI: 10.1186/s13321-019-0397-9

Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
journal, May 2019


Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
journal, June 2019


Accelerating the discovery of materials for clean energy in the era of smart automation
journal, April 2018

  • Tabor, Daniel P.; Roch, Loïc M.; Saikin, Semion K.
  • Nature Reviews Materials, Vol. 3, Issue 5
  • DOI: 10.1038/s41578-018-0005-z

Controlling an organic synthesis robot with machine learning to search for new reactivity
journal, July 2018


Extensive deep neural networks for transferring small scale learning to large scale systems
journal, January 2019

  • Mills, Kyle; Ryczko, Kevin; Luchak, Iryna
  • Chemical Science, Vol. 10, Issue 15
  • DOI: 10.1039/c8sc04578j

Efficient multi-objective molecular optimization in a continuous latent space
journal, January 2019

  • Winter, Robin; Montanari, Floriane; Steffen, Andreas
  • Chemical Science, Vol. 10, Issue 34
  • DOI: 10.1039/c9sc01928f

A quantitative uncertainty metric controls error in neural network-driven chemical discovery
journal, January 2019

  • Janet, Jon Paul; Duan, Chenru; Yang, Tzuhsiung
  • Chemical Science, Vol. 10, Issue 34
  • DOI: 10.1039/c9sc02298h

KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images
journal, June 2019


Multi-channel PINN: investigating scalable and transferable neural networks for drug discovery
journal, July 2019


Transformer-CNN: Swiss knife for QSAR modeling and interpretation
journal, March 2020


Exploring differential evolution for inverse QSAR analysis
journal, January 2017


Challenges and opportunities of polymer design with machine learning and high throughput experimentation
journal, May 2019

  • Kumar, Jatin N.; Li, Qianxiao; Jun, Ye
  • MRS Communications, Vol. 9, Issue 02
  • DOI: 10.1557/mrc.2019.54

In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery
journal, February 2020

  • de Souza Neto, Lauro Ribeiro; Moreira-Filho, José Teófilo; Neves, Bruno Junior
  • Frontiers in Chemistry, Vol. 8
  • DOI: 10.3389/fchem.2020.00093

Toward Design of Novel Materials for Organic Electronics
journal, April 2019

  • Friederich, Pascal; Fediai, Artem; Kaiser, Simon
  • Advanced Materials, Vol. 31, Issue 26
  • DOI: 10.1002/adma.201808256

Molecular Semiconductors for Logic Operations: Dead‐End or Bright Future?
journal, January 2020

  • Schweicher, Guillaume; Garbay, Guillaume; Jouclas, Rémy
  • Advanced Materials, Vol. 32, Issue 10
  • DOI: 10.1002/adma.201905909

Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra
journal, January 2019

  • Ghosh, Kunal; Stuke, Annika; Todorović, Milica
  • Advanced Science, Vol. 6, Issue 9
  • DOI: 10.1002/advs.201801367

Data‐Driven Materials Science: Status, Challenges, and Perspectives
journal, September 2019

  • Himanen, Lauri; Geurts, Amber; Foster, Adam Stuart
  • Advanced Science, Vol. 6, Issue 21
  • DOI: 10.1002/advs.201900808

Toward Predicting Efficiency of Organic Solar Cells via Machine Learning and Improved Descriptors
journal, July 2018

  • Sahu, Harikrishna; Rao, Weining; Troisi, Alessandro
  • Advanced Energy Materials, Vol. 8, Issue 24
  • DOI: 10.1002/aenm.201801032

A Critical Review of Machine Learning of Energy Materials
journal, January 2020


A Quantitative Model for Alkane Nucleophilicity Based on C−H Bond Structural/Topological Descriptors
journal, February 2020

  • Besora, Maria; Olmos, Andrea; Gava, Riccardo
  • Angewandte Chemie International Edition, Vol. 59, Issue 8
  • DOI: 10.1002/anie.201914386

Designing Anticancer Peptides by Constructive Machine Learning
journal, May 2018

  • Grisoni, Francesca; Neuhaus, Claudia S.; Gabernet, Gisela
  • ChemMedChem, Vol. 13, Issue 13
  • DOI: 10.1002/cmdc.201800204

Virtual Materials Intelligence for Design and Discovery of Advanced Electrocatalysts
journal, November 2019

  • Malek, Ali; Eslamibidgoli, Mohammad Javad; Mokhtari, Mehrdad
  • ChemPhysChem, Vol. 20, Issue 22
  • DOI: 10.1002/cphc.201900570

Machine learning in materials science
journal, August 2019


A Survey of Multi‐task Learning Methods in Chemoinformatics
journal, November 2018

  • Sosnin, Sergey; Vashurina, Mariia; Withnall, Michael
  • Molecular Informatics, Vol. 38, Issue 4
  • DOI: 10.1002/minf.201800108

iQSPR in XenonPy: A Bayesian Molecular Design Algorithm
journal, November 2019

  • Wu, Stephen; Lambard, Guillaume; Liu, Chang
  • Molecular Informatics, Vol. 39, Issue 1-2
  • DOI: 10.1002/minf.201900107

Advances and challenges in deep generative models for de novo molecule generation
journal, October 2018

  • Xue, Dongyu; Gong, Yukang; Yang, Zhaoyi
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 9, Issue 3
  • DOI: 10.1002/wcms.1395

Making machine learning a useful tool in the accelerated discovery of transition metal complexes
journal, July 2019

  • Kulik, Heather J.
  • WIREs Computational Molecular Science, Vol. 10, Issue 1
  • DOI: 10.1002/wcms.1439

A Transformer Model for Retrosynthesis
book, September 2019

  • Karpov, Pavel; Godin, Guillaume; Tetko, Igor V.
  • Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, p. 817-830
  • DOI: 10.1007/978-3-030-30493-5_78

Focused Library Generator: case of Mdmx inhibitors
journal, November 2019

  • Xia, Zhonghua; Karpov, Pavel; Popowicz, Grzegorz
  • Journal of Computer-Aided Molecular Design, Vol. 34, Issue 7
  • DOI: 10.1007/s10822-019-00242-8

De novo generation of hit-like molecules from gene expression signatures using artificial intelligence
journal, January 2020

  • Méndez-Lucio, Oscar; Baillif, Benoit; Clevert, Djork-Arné
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-019-13807-w

Machine learning enables polymer cloud-point engineering via inverse design
journal, July 2019

  • Kumar, Jatin N.; Li, Qianxiao; Tang, Karen Y. T.
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0209-9

Coarse-graining auto-encoders for molecular dynamics
journal, December 2019


Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics
journal, January 2020


Efficiently measuring a quantum device using machine learning
journal, September 2019


How to explore chemical space using algorithms and automation
journal, January 2019

  • Gromski, Piotr S.; Henson, Alon B.; Granda, Jarosław M.
  • Nature Reviews Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/s41570-018-0066-y

Rethinking drug design in the artificial intelligence era
journal, December 2019

  • Schneider, Petra; Walters, W. Patrick; Plowright, Alleyn T.
  • Nature Reviews Drug Discovery, Vol. 19, Issue 5
  • DOI: 10.1038/s41573-019-0050-3

Deep learning enables rapid identification of potent DDR1 kinase inhibitors
journal, September 2019


Assessing the impact of generative AI on medicinal chemistry
journal, January 2020


Unified rational protein engineering with sequence-based deep representation learning
journal, October 2019


Optimization of Molecules via Deep Reinforcement Learning
journal, July 2019


Machine learning in catalysis
journal, April 2018


Generative molecular design in low data regimes
journal, March 2020

  • Moret, Michael; Friedrich, Lukas; Grisoni, Francesca
  • Nature Machine Intelligence, Vol. 2, Issue 3
  • DOI: 10.1038/s42256-020-0160-y

Towards operando computational modeling in heterogeneous catalysis
journal, January 2018

  • Grajciar, Lukáš; Heard, Christopher J.; Bondarenko, Anton A.
  • Chemical Society Reviews, Vol. 47, Issue 22
  • DOI: 10.1039/c8cs00398j

“Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models
journal, January 2018

  • Schwaller, Philippe; Gaudin, Théophile; Lányi, Dávid
  • Chemical Science, Vol. 9, Issue 28
  • DOI: 10.1039/c8sc02339e

Atomic structure of boron resolved using machine learning and global sampling
journal, January 2018

  • Huang, Si-Da; Shang, Cheng; Kang, Pei-Lin
  • Chemical Science, Vol. 9, Issue 46
  • DOI: 10.1039/c8sc03427c

Predicting performance limits of methane gas storage in zeolites with an artificial neural network
journal, January 2019

  • Lee, Sangwon; Kim, Baekjun; Kim, Jihan
  • Journal of Materials Chemistry A, Vol. 7, Issue 6
  • DOI: 10.1039/c8ta12208c

Deep learning for molecular design—a review of the state of the art
journal, January 2019

  • Elton, Daniel C.; Boukouvalas, Zois; Fuge, Mark D.
  • Molecular Systems Design & Engineering, Vol. 4, Issue 4
  • DOI: 10.1039/c9me00039a

Nanoinformatics, and the big challenges for the science of small things
journal, January 2019

  • Barnard, A. S.; Motevalli, B.; Parker, A. J.
  • Nanoscale, Vol. 11, Issue 41
  • DOI: 10.1039/c9nr05912a

Deep-learning-based target screening and similarity search for the predicted inhibitors of the pathways in Parkinson's disease
journal, January 2019

  • Khan, Abbas; Chandra Kaushik, Aman; Ali, Syed Shujait
  • RSC Advances, Vol. 9, Issue 18
  • DOI: 10.1039/c9ra01007f

Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning
journal, January 2019


Delfos: deep learning model for prediction of solvation free energies in generic organic solvents
journal, January 2019

  • Lim, Hyuntae; Jung, YounJoon
  • Chemical Science, Vol. 10, Issue 36
  • DOI: 10.1039/c9sc02452b

DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations
journal, January 2020

  • Rifaioglu, Ahmet Sureyya; Nalbat, Esra; Atalay, Volkan
  • Chemical Science, Vol. 11, Issue 9
  • DOI: 10.1039/c9sc03414e

Constrained Bayesian optimization for automatic chemical design using variational autoencoders
journal, January 2020

  • Griffiths, Ryan-Rhys; Hernández-Lobato, José Miguel
  • Chemical Science, Vol. 11, Issue 2
  • DOI: 10.1039/c9sc04026a

Machine learning for renewable energy materials
journal, January 2019

  • Gu, Geun Ho; Noh, Juhwan; Kim, Inkyung
  • Journal of Materials Chemistry A, Vol. 7, Issue 29
  • DOI: 10.1039/c9ta02356a

Structure prediction of boron-doped graphene by machine learning
journal, March 2018

  • M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5018065

Constant size descriptors for accurate machine learning models of molecular properties
journal, June 2018

  • Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5020441

Machine learning-based screening of complex molecules for polymer solar cells
journal, June 2018

  • Jørgensen, Peter Bjørn; Mesta, Murat; Shil, Suranjan
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5023563

Chemical diversity in molecular orbital energy predictions with kernel ridge regression
journal, May 2019

  • Stuke, Annika; Todorović, Milica; Rupp, Matthias
  • The Journal of Chemical Physics, Vol. 150, Issue 20
  • DOI: 10.1063/1.5086105

Atomistic structure learning
journal, August 2019

  • Jørgensen, Mathias S.; Mortensen, Henrik L.; Meldgaard, Søren A.
  • The Journal of Chemical Physics, Vol. 151, Issue 5
  • DOI: 10.1063/1.5108871

Learning from the density to correct total energy and forces in first principle simulations
journal, October 2019

  • Dick, Sebastian; Fernandez-Serra, Marivi
  • The Journal of Chemical Physics, Vol. 151, Issue 14
  • DOI: 10.1063/1.5114618

Deep learning improves prediction of drug–drug and drug–food interactions
journal, April 2018

  • Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 18
  • DOI: 10.1073/pnas.1803294115

A unified machine-learning protocol for asymmetric catalysis as a proof of concept demonstration using asymmetric hydrogenation
journal, January 2020

  • Singh, Sukriti; Pareek, Monika; Changotra, Avtar
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 3
  • DOI: 10.1073/pnas.1916392117

Structure and dynamics of warm dense aluminum: a molecular dynamics study with density functional theory and deep potential
journal, January 2020

  • Liu, Qianrui; Lu, Denghui; Chen, Mohan
  • Journal of Physics: Condensed Matter, Vol. 32, Issue 14
  • DOI: 10.1088/1361-648x/ab5890

Deep learning of pharmacogenomics resources: moving towards precision oncology
journal, December 2019

  • Chiu, Yu-Chiao; Chen, Hung-I Harry; Gorthi, Aparna
  • Briefings in Bioinformatics
  • DOI: 10.1093/bib/bbz144

DeepDTA: deep drug–target binding affinity prediction
journal, September 2018


Differentiable learning of quantum circuit Born machines
journal, December 2018


Predicting charge density distribution of materials using a local-environment-based graph convolutional network
journal, November 2019


Efficient construction method for phase diagrams using uncertainty sampling
journal, March 2019


Approaches for the discovery of metallo‐β‐lactamase inhibitors: A review
journal, May 2019

  • Shi, Cheng; Chen, Jiaxing; Kang, Xinyue
  • Chemical Biology & Drug Design
  • DOI: 10.1111/cbdd.13526

Latent Space Cartography: Visual Analysis of Vector Space Embeddings
journal, June 2019

  • Liu, Yang; Jun, Eunice; Li, Qisheng
  • Computer Graphics Forum, Vol. 38, Issue 3
  • DOI: 10.1111/cgf.13672

Electronic structure at coarse-grained resolutions from supervised machine learning
journal, March 2019

  • Jackson, Nicholas E.; Bowen, Alec S.; Antony, Lucas W.
  • Science Advances, Vol. 5, Issue 3
  • DOI: 10.1126/sciadv.aav1190

Training of quantum circuits on a hybrid quantum computer
journal, October 2019


Inverse design of porous materials using artificial neural networks
journal, January 2020


Inverse molecular design using machine learning: Generative models for matter engineering
journal, July 2018


Predicting adverse drug reactions through interpretable deep learning framework
journal, December 2018


Molecular generative model based on conditional variational autoencoder for de novo molecular design
journal, July 2018


QBMG: quasi-biogenic molecule generator with deep recurrent neural network
journal, January 2019


Fast, efficient fragment-based coordinate generation for Open Babel
journal, August 2019


Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
journal, November 2019


Mol-CycleGAN: a generative model for molecular optimization
journal, January 2020

  • Maziarka, Łukasz; Pocha, Agnieszka; Kaczmarczyk, Jan
  • Journal of Cheminformatics, Vol. 12, Issue 1
  • DOI: 10.1186/s13321-019-0404-1

Virtual Screening Meets Deep Learning
journal, December 2018


To Embed or Not: Network Embedding as a Paradigm in Computational Biology
journal, May 2019


GANsDTA: Predicting Drug-Target Binding Affinity Using GANs
journal, January 2020


Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research
journal, November 2019


Descriptor Free QSAR Modeling Using Deep Learning With Long Short-Term Memory Neural Networks
journal, September 2019

  • Chakravarti, Suman K.; Alla, Sai Radha Mani
  • Frontiers in Artificial Intelligence, Vol. 2
  • DOI: 10.3389/frai.2019.00017

Improving Chemical Autoencoder Latent Space and Molecular De Novo Generation Diversity with Heteroencoders
journal, October 2018


Snails In Silico: A Review of Computational Studies on the Conopeptides
journal, March 2019

  • Mansbach, Rachael; Travers, Timothy; McMahon, Benjamin
  • Marine Drugs, Vol. 17, Issue 3
  • DOI: 10.3390/md17030145

Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges
journal, January 2020


Artificial intelligence in drug discovery
journal, September 2018

  • Sellwood, Matthew A.; Ahmed, Mohamed; Segler, Marwin HS
  • Future Medicinal Chemistry, Vol. 10, Issue 17
  • DOI: 10.4155/fmc-2018-0212

Deep learning for molecular generation
journal, March 2019

  • Xu, Youjun; Lin, Kangjie; Wang, Shiwei
  • Future Medicinal Chemistry, Vol. 11, Issue 6
  • DOI: 10.4155/fmc-2018-0358

Benford's law in medicinal chemistry: Implications for drug design
journal, September 2019


Boltzmann Generators – Sampling Equilibrium States of Many-Body Systems with Deep Learning
text, January 2019


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.