DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detection of nanoparticles in carbon arc discharge with laser-induced incandescence

Abstract

Laser-induced incandescence measurements were conducted in the carbon arc discharge, used for synthesis of carbon nanostructures. The results reveal two spatial regions occupied by dominant populations of carbon particles with different sizes. Close to the axis of the arc, large micron size particles dominate the incandescence signal. In the arc periphery, the dominant population of nanoparticles has diameter of 20 nm. Using a heat transfer model between the gas, arc plasma and the particles, it is shown that such a drastic difference in the particle sizes can be explained by evaporation of the micron-scale particles which move across the arc plasma towards the arc periphery. It is also hypothesized that mass evaporated from the micro particles contributes to the carbon feedstock for the formation of nanostructures. (C) 2017 Elsevier Ltd. All rights reserved.

Authors:
ORCiD logo [1];  [2];  [1]; ORCiD logo [1]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Univ. of Tokyo (Japan)
Publication Date:
Research Org.:
Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Org.:
This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
OSTI Identifier:
1357609
Alternate Identifier(s):
OSTI ID: 1416413
Grant/Contract Number:  
AC02-09CH11466
Resource Type:
Accepted Manuscript
Journal Name:
Carbon
Additional Journal Information:
Journal Volume: 117; Journal Issue: C; Journal ID: ISSN 0008-6223
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Nanotubes; Carbon arc discharges

Citation Formats

Yatom, S., Bak, J., Khrabryi, A., and Raitses, Y. Detection of nanoparticles in carbon arc discharge with laser-induced incandescence. United States: N. p., 2017. Web. doi:10.1016/j.carbon.2017.02.055.
Yatom, S., Bak, J., Khrabryi, A., & Raitses, Y. Detection of nanoparticles in carbon arc discharge with laser-induced incandescence. United States. https://doi.org/10.1016/j.carbon.2017.02.055
Yatom, S., Bak, J., Khrabryi, A., and Raitses, Y. Mon . "Detection of nanoparticles in carbon arc discharge with laser-induced incandescence". United States. https://doi.org/10.1016/j.carbon.2017.02.055. https://www.osti.gov/servlets/purl/1357609.
@article{osti_1357609,
title = {Detection of nanoparticles in carbon arc discharge with laser-induced incandescence},
author = {Yatom, S. and Bak, J. and Khrabryi, A. and Raitses, Y.},
abstractNote = {Laser-induced incandescence measurements were conducted in the carbon arc discharge, used for synthesis of carbon nanostructures. The results reveal two spatial regions occupied by dominant populations of carbon particles with different sizes. Close to the axis of the arc, large micron size particles dominate the incandescence signal. In the arc periphery, the dominant population of nanoparticles has diameter of 20 nm. Using a heat transfer model between the gas, arc plasma and the particles, it is shown that such a drastic difference in the particle sizes can be explained by evaporation of the micron-scale particles which move across the arc plasma towards the arc periphery. It is also hypothesized that mass evaporated from the micro particles contributes to the carbon feedstock for the formation of nanostructures. (C) 2017 Elsevier Ltd. All rights reserved.},
doi = {10.1016/j.carbon.2017.02.055},
journal = {Carbon},
number = C,
volume = 117,
place = {United States},
year = {Mon Feb 20 00:00:00 EST 2017},
month = {Mon Feb 20 00:00:00 EST 2017}
}

Journal Article:

Citation Metrics:
Cited by: 40 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Arc discharge synthesis of carbon nanotubes: Comprehensive review
journal, November 2014


Determining synthesis region of the single wall carbon nanotubes in arc plasma volume
journal, October 2016


Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications
journal, December 2015

  • Michelsen, H. A.; Schulz, C.; Smallwood, G. J.
  • Progress in Energy and Combustion Science, Vol. 51
  • DOI: 10.1016/j.pecs.2015.07.001

Detection of dust particles in the plasma by laser‐induced heating
journal, March 1996

  • Stoffels, W. W.; Stoffels, E.; Kroesen, G. M. W.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 14, Issue 2
  • DOI: 10.1116/1.580150

Size determination of nanoparticles in low-pressure plasma with laser-induced incandescence technique
journal, August 2003

  • Eom, G. S.; Park, C. W.; Shin, Y. H.
  • Applied Physics Letters, Vol. 83, Issue 6
  • DOI: 10.1063/1.1599965

Laser-induced incandescence applied to dusty plasmas
journal, July 2016

  • van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.
  • Journal of Physics D: Applied Physics, Vol. 49, Issue 29
  • DOI: 10.1088/0022-3727/49/29/295206

Laser-induced incandescence from laser-heated silicon nanoparticles
journal, October 2016


Time-resolved laser-induced incandescence from multiwalled carbon nanotubes in air
journal, January 2015

  • Mitrani, J. M.; Shneider, M. N.
  • Applied Physics Letters, Vol. 106, Issue 4
  • DOI: 10.1063/1.4907000

Carbon nanoparticles in the radiation field of the stationary arc discharge
journal, July 2015


Modeling thermionic emission from laser-heated nanoparticles
journal, February 2016

  • Mitrani, J. M.; Shneider, M. N.; Stratton, B. C.
  • Applied Physics Letters, Vol. 108, Issue 5
  • DOI: 10.1063/1.4940992

Study of particles ejected after pulsed laser ablation of a graphite target
journal, January 1999


Unstable behavior of anodic arc discharge for synthesis of nanomaterials
journal, July 2016


Atmospheric pressure arc discharge with ablating graphite anode
journal, May 2015


Investigation of Thermal Accommodation Coefficients in Time-Resolved Laser-Induced Incandescence
journal, September 2008

  • Daun, K. J.; Smallwood, G. J.; Liu, F.
  • Journal of Heat Transfer, Vol. 130, Issue 12
  • DOI: 10.1115/1.2977549

Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence
journal, April 2006


Transport phenomena in the rarefied gas transition regime
journal, February 1974


Measurements of the thermal conductivity of helium in the temperature range 1600–6700°K
journal, September 1965

  • Collins, Daniel J.; Greif, Ralph; Bryson, Arthur E.
  • International Journal of Heat and Mass Transfer, Vol. 8, Issue 9
  • DOI: 10.1016/0017-9310(65)90064-5

Modeling laser-induced incandescence of soot: a summary and comparison of LII models
journal, April 2007


The refractive index of colloidal carbon
journal, May 1979


Works referencing / citing this record:

Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions
journal, January 2018

  • Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.5007082

Determining the gas composition for the growth of BNNTs using a thermodynamic approach
journal, January 2019

  • Khrabry, Alexander; Kaganovich, Igor D.; Yatom, Shurik
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 24
  • DOI: 10.1039/c9cp01342c

Investigation of the short argon arc with hot anode. II. Analytical model
journal, January 2018

  • Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.5007084

A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application
journal, October 2019


Plasma mass separation
journal, September 2018

  • Zweben, S. J.; Gueroult, R.; Fisch, N. J.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5042845

Growth of nanoparticles in dynamic plasma
journal, June 2019


Quantitative imaging of carbon dimer precursor for nanomaterial synthesis in the carbon arc
journal, February 2018

  • Vekselman, V.; Khrabry, A.; Kaganovich, I.
  • Plasma Sources Science and Technology, Vol. 27, Issue 2
  • DOI: 10.1088/1361-6595/aaa735

Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials
journal, February 2019

  • Kim, K. S.; Kim, T. H.
  • Journal of Applied Physics, Vol. 125, Issue 7
  • DOI: 10.1063/1.5060977

Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles
journal, January 2018


Synthesis of nanoparticles in carbon arc: measurements and modeling
journal, May 2018

  • Yatom, Shurik; Khrabry, Alexander; Mitrani, James
  • MRS Communications, Vol. 8, Issue 03
  • DOI: 10.1557/mrc.2018.91

In situ diagnostics for nanomaterial synthesis in carbon arc plasma
journal, August 2018

  • Stratton, B. C.; Gerakis, A.; Kaganovich, I.
  • Plasma Sources Science and Technology, Vol. 27, Issue 8
  • DOI: 10.1088/1361-6595/aad3fa

Root-growth of boron nitride nanotubes: experiments and ab initio simulations
journal, January 2018

  • Santra, Biswajit; Ko, Hsin-Yu; Yeh, Yao-Wen
  • Nanoscale, Vol. 10, Issue 47
  • DOI: 10.1039/c8nr06217j

Multiparametric diagnostic in the synthesis of carbon nanostructures via submerged arc discharge: Stability, nucleation and yield
journal, November 2019

  • Hernandez-Tabares, L.; Fortune-Fabregas, S.; Chao-Mujica, F. J.
  • Journal of Applied Physics, Vol. 126, Issue 18
  • DOI: 10.1063/1.5108815

Investigation of the Short Argon Arc with Hot Anode, Part II: Analytical Model
text, January 2017


Quantitative imaging of carbon dimer precursor for nanomaterial synthesis in the carbon arc
journal, February 2018

  • Vekselman, V.; Khrabry, A.; Kaganovich, I.
  • Plasma Sources Science and Technology, Vol. 27, Issue 2
  • DOI: 10.1088/1361-6595/aaa735

Synthesis of nanoparticles in carbon arc: measurements and modeling
journal, May 2018

  • Yatom, Shurik; Khrabry, Alexander; Mitrani, James
  • MRS Communications, Vol. 8, Issue 03
  • DOI: 10.1557/mrc.2018.91

A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application
journal, October 2019