skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices

Abstract

Single band-edge states can trap light and function as high-quality optical feedback for microscale lasers and nanolasers. However, access to more than a single band-edge mode for nanolasing has not been possible because of limited cavity designs. Here, we describe how plasmonic superlattices-finite-arrays of nanoparticles (patches) grouped into microscale arrays-can support multiple band-edge modes capable of multi-modal nanolasing at programmed emission wavelengths and with large mode spacings. Different lasing modes show distinct input-output light behaviour and decay dynamics that can be tailored by nanoparticle size. By modelling the superlattice nanolasers with a four-level gain system and a time-domain approach, we reveal that the accumulation of population inversion at plasmonic hot spots can be spatially modulated by the diffractive coupling order of the patches. Furthermore, we show that symmetry-broken superlattices can sustain switchable nanolasing between a single mode and multiple modes.

Authors:
 [1]; ORCiD logo [2];  [1];  [1];  [3]; ORCiD logo [1]; ORCiD logo [1]
  1. Northwestern Univ., Evanston, IL (United States)
  2. Northwestern Univ., Evanston, IL (United States); Stanford Univ., Stanford, CA (United States)
  3. Northwestern Univ., Evanston, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division
OSTI Identifier:
1416153
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Nanotechnology
Additional Journal Information:
Journal Volume: 12; Journal Issue: 9; Journal ID: ISSN 1748-3387
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Wang, Danqing, Yang, Ankun, Wang, Weijia, Hua, Yi, Schaller, Richard D., Schatz, George C., and Odom, Teri W. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. United States: N. p., 2017. Web. doi:10.1038/nnano.2017.126.
Wang, Danqing, Yang, Ankun, Wang, Weijia, Hua, Yi, Schaller, Richard D., Schatz, George C., & Odom, Teri W. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. United States. doi:10.1038/nnano.2017.126.
Wang, Danqing, Yang, Ankun, Wang, Weijia, Hua, Yi, Schaller, Richard D., Schatz, George C., and Odom, Teri W. Mon . "Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices". United States. doi:10.1038/nnano.2017.126. https://www.osti.gov/servlets/purl/1416153.
@article{osti_1416153,
title = {Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices},
author = {Wang, Danqing and Yang, Ankun and Wang, Weijia and Hua, Yi and Schaller, Richard D. and Schatz, George C. and Odom, Teri W.},
abstractNote = {Single band-edge states can trap light and function as high-quality optical feedback for microscale lasers and nanolasers. However, access to more than a single band-edge mode for nanolasing has not been possible because of limited cavity designs. Here, we describe how plasmonic superlattices-finite-arrays of nanoparticles (patches) grouped into microscale arrays-can support multiple band-edge modes capable of multi-modal nanolasing at programmed emission wavelengths and with large mode spacings. Different lasing modes show distinct input-output light behaviour and decay dynamics that can be tailored by nanoparticle size. By modelling the superlattice nanolasers with a four-level gain system and a time-domain approach, we reveal that the accumulation of population inversion at plasmonic hot spots can be spatially modulated by the diffractive coupling order of the patches. Furthermore, we show that symmetry-broken superlattices can sustain switchable nanolasing between a single mode and multiple modes.},
doi = {10.1038/nnano.2017.126},
journal = {Nature Nanotechnology},
number = 9,
volume = 12,
place = {United States},
year = {2017},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Light-emitting diodes by band-structure engineering in van der Waals heterostructures
journal, February 2015

  • Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4205

Lasing at the band edges of plasmonic lattices
journal, October 2014


Spasers explained
journal, June 2008


Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals
journal, October 2015


Plasmonic Nanolaser Using Epitaxially Grown Silver Film
journal, July 2012


Advances in small lasers
journal, November 2014


Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems
journal, January 2003


Lasing spaser
journal, May 2008

  • Zheludev, N. I.; Prosvirnin, S. L.; Papasimakis, N.
  • Nature Photonics, Vol. 2, Issue 6
  • DOI: 10.1038/nphoton.2008.82

Real-time tunable lasing from plasmonic nanocavity arrays
journal, April 2015

  • Yang, Ankun; Hoang, Thang B.; Dridi, Montacer
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7939

Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles
journal, August 2008


Lasing action in strongly coupled plasmonic nanocavity arrays
journal, June 2013

  • Zhou, Wei; Dridi, Montacer; Suh, Jae Yong
  • Nature Nanotechnology, Vol. 8, Issue 7
  • DOI: 10.1038/nnano.2013.99

Multiscale patterning of plasmonic metamaterials
journal, August 2007

  • Henzie, Joel; Lee, Min Hyung; Odom, Teri W.
  • Nature Nanotechnology, Vol. 2, Issue 9
  • DOI: 10.1038/nnano.2007.252

Engineering the Electronic Band Structure for Multiband Solar Cells
journal, January 2011


Lasing in dark and bright modes of a finite-sized plasmonic lattice
journal, January 2017

  • Hakala, T. K.; Rekola, H. T.; Väkeväinen, A. I.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13687

Cavity-free plasmonic nanolasing enabled by dispersionless stopped light
journal, September 2014

  • Pickering, Tim; Hamm, Joachim M.; Page, A. Freddie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5972

Plasmon lasers at deep subwavelength scale
journal, August 2009

  • Oulton, Rupert F.; Sorger, Volker J.; Zentgraf, Thomas
  • Nature, Vol. 461, Issue 7264
  • DOI: 10.1038/nature08364

Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers
journal, August 2008

  • Qian, Fang; Li, Yat; Gradečak, Silvija
  • Nature Materials, Vol. 7, Issue 9
  • DOI: 10.1038/nmat2253

Slow light in photonic crystals
journal, August 2006


Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes
journal, June 2004

  • Zou, Shengli; Janel, Nicolas; Schatz, George C.
  • The Journal of Chemical Physics, Vol. 120, Issue 23
  • DOI: 10.1063/1.1760740

Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers
journal, September 2014

  • Zhang, Qing; Ha, Son Tung; Liu, Xinfeng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503057g

Multiplexed and Electrically Modulated Plasmon Laser Circuit
journal, September 2012

  • Ma, Ren-Min; Yin, Xiaobo; Oulton, Rupert F.
  • Nano Letters, Vol. 12, Issue 10, p. 5396-5402
  • DOI: 10.1021/nl302809a

Direct Evidence for Surface Plasmon-Mediated Enhanced Light Transmission through Metallic Nanohole Arrays
journal, September 2006

  • Gao, Hanwei; Henzie, Joel; Odom, Teri W.
  • Nano Letters, Vol. 6, Issue 9, p. 2104-2108
  • DOI: 10.1021/nl061670r

Improved Pattern Transfer in Soft Lithography Using Composite Stamps
journal, June 2002

  • Odom, Teri W.; Love, J. Christopher; Wolfe, Daniel B.
  • Langmuir, Vol. 18, Issue 13, p. 5314-5320
  • DOI: 10.1021/la020169l

A monolithic white laser
journal, July 2015

  • Fan, Fan; Turkdogan, Sunay; Liu, Zhicheng
  • Nature Nanotechnology, Vol. 10, Issue 9
  • DOI: 10.1038/nnano.2015.149

Two-Dimensional Photonic Band-Gap Defect Mode Laser
journal, June 1999


Room-temperature sub-diffraction-limited plasmon laser by total internal reflection
journal, December 2010

  • Ma, Ren-Min; Oulton, Rupert F.; Sorger, Volker J.
  • Nature Materials, Vol. 10, Issue 2
  • DOI: 10.1038/nmat2919

Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays
journal, November 2015


Optical Constants of the Noble Metals
journal, December 1972


Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser
journal, September 2001


Collective Resonances in Gold Nanoparticle Arrays
journal, September 2008


    Works referencing / citing this record:

    Hybrid Plasmonic–Ferroelectric Architectures for Lasing and SHG Processes at the Nanoscale
    journal, June 2019

    • O. Ramírez, Mariola; Molina, Pablo; Gómez‐Tornero, Alejandro
    • Advanced Materials, Vol. 31, Issue 35
    • DOI: 10.1002/adma.201901428

    Hybrid Plasmonic–Ferroelectric Architectures for Lasing and SHG Processes at the Nanoscale
    journal, June 2019

    • O. Ramírez, Mariola; Molina, Pablo; Gómez‐Tornero, Alejandro
    • Advanced Materials, Vol. 31, Issue 35
    • DOI: 10.1002/adma.201901428