skip to main content


Title: The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region

Forests are expected to become more vulnerable to drought-induced tree mortality owing to rising temperatures and changing precipitation patterns that amplify drought lethality. There is a crucial knowledge gap regarding drought–pathogen interactions and their effects on tree mortality. The objectives of this research were to examine whether stand dynamics and 'background' mortality rates were affected by a severe drought in 2012; and to evaluate the importance of drought–pathogen interactions within the context of a mortality event that killed 10.0% and 26.5% of white (Quercus alba L.) and black (Q. velutina Lam.) oak stems, respectively, in a single year. We synthesized (i) forest inventory data (24 years), (ii) 11 years of ecosystem flux data with supporting biological data including predawn leaf water potential and annual forest inventories, (iii) tree-ring analyses of individual white oaks that were alive and ones that died in 2013, and (iv) documentation of a pathogen infection. This forest displayed stand dynamics consistent with expected patterns of decreasing tree density and increasing basal area. Continued basal area growth outpaced mortality implying a net accumulation of live biomass, which was supported by eddy covariance ecosystem carbon flux observations. Individual white and black oaks that died in 2013 displayed historicallymore » lower growth with the majority of dead trees exhibiting Biscogniauxia cankers. Our observations point to the importance of event-based oak mortality and that drought–Biscogniauxia interactions are important in shaping oak stand dynamics in this region. Although forest function has not been significantly impaired, these drought–pathogen interactions could amplify mortality under future climate conditions and thus warrant further investigation.« less
ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [2]
  1. Univ. of Missouri, Columbia, MO (United States). School of Natural Resources
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division. Climate Change Science Inst.
Publication Date:
Grant/Contract Number:
Published Article
Journal Name:
Environmental Research Letters
Additional Journal Information:
Journal Volume: 13; Journal Issue: 1; Journal ID: ISSN 1748-9326
IOP Publishing
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Missouri, Columbia, MO (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1422605