skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

Abstract

Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g., hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.

Authors:
 [1];  [2]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
OSTI Identifier:
1415548
Alternate Identifier(s):
OSTI ID: 1420665; OSTI ID: 1436651
Report Number(s):
LLNL-JRNL-731350
Journal ID: ISSN 0021-8979; TRN: US1800833
Grant/Contract Number:  
AC52-07NA27344; AC02-05CH11231 (LBNL) and AC52-07NA27344 (LLNL); AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 122; Journal Issue: 19; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 36 MATERIALS SCIENCE

Citation Formats

Barnard, John J., and Schenkel, Thomas. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization. United States: N. p., 2017. Web. doi:10.1063/1.5011171.
Barnard, John J., & Schenkel, Thomas. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization. United States. doi:10.1063/1.5011171.
Barnard, John J., and Schenkel, Thomas. Wed . "Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization". United States. doi:10.1063/1.5011171. https://www.osti.gov/servlets/purl/1415548.
@article{osti_1415548,
title = {Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization},
author = {Barnard, John J. and Schenkel, Thomas},
abstractNote = {Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g., hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.},
doi = {10.1063/1.5011171},
journal = {Journal of Applied Physics},
number = 19,
volume = 122,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Atomistic simulations of swift ion tracks in diamond and graphite
journal, March 2007

  • Schwen, D.; Bringa, E. M.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 256, Issue 1
  • DOI: 10.1016/j.nimb.2006.12.001

Ionization-induced annealing of pre-existing defects in silicon carbide
journal, August 2015

  • Zhang, Yanwen; Sachan, Ritesh; Pakarinen, Olli H.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9049

Materials modification using intense ion beams
journal, July 2004


An electron conductivity model for dense plasmas
journal, January 1984

  • Lee, Y. T.; More, R. M.
  • Physics of Fluids, Vol. 27, Issue 5
  • DOI: 10.1063/1.864744

A new quotidian equation of state (QEOS) for hot dense matter
journal, January 1988

  • More, R. M.; Warren, K. H.; Young, D. A.
  • Physics of Fluids, Vol. 31, Issue 10
  • DOI: 10.1063/1.866963

Ion–solid interactions at the extremes of electronic energy loss: Examples for amorphous semiconductors and embedded nanostructures
journal, February 2015

  • Ridgway, M. C.; Djurabekova, F.; Nordlund, K.
  • Current Opinion in Solid State and Materials Science, Vol. 19, Issue 1
  • DOI: 10.1016/j.cossms.2014.10.001

Light-ion-beam-induced annealing of implantation damage in diamond
journal, June 1986

  • Adel, M.; Kalish, R.; Richter, V.
  • Journal of Materials Research, Vol. 1, Issue 3
  • DOI: 10.1557/JMR.1986.0503

Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions
journal, September 2009

  • Lang, Maik; Zhang, Fuxiang; Zhang, Jiaming
  • Nature Materials, Vol. 8, Issue 10
  • DOI: 10.1038/nmat2528

CASINO V2.42—A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users
journal, January 2007

  • Drouin, Dominique; Couture, Alexandre Réal; Joly, Dany
  • Scanning, Vol. 29, Issue 3
  • DOI: 10.1002/sca.20000

Short intense ion pulses for materials and warm dense matter research
journal, November 2015

  • Seidl, Peter A.; Persaud, Arun; Waldron, William L.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 800
  • DOI: 10.1016/j.nima.2015.08.013

Isochoric Heating of Solid-Density Matter with an Ultrafast Proton Beam
journal, September 2003


NDCX-II target experiments and simulations
journal, January 2014

  • Barnard, J. J.; More, R. M.; Terry, M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 733
  • DOI: 10.1016/j.nima.2013.05.096

Towards highest peak intensities for ultra-short MeV-range ion bunches
journal, July 2015

  • Busold, Simon; Schumacher, Dennis; Brabetz, Christian
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep12459

Quantum nanophotonics in diamond [Invited]
journal, January 2016

  • Schröder, Tim; Mouradian, Sara L.; Zheng, Jiabao
  • Journal of the Optical Society of America B, Vol. 33, Issue 4
  • DOI: 10.1364/JOSAB.33.000B65

Ion-beam-induced epitaxial crystallization and amorphization in silicon
journal, January 1990


Controlling spin relaxation with a cavity
journal, February 2016


Picosecond metrology of laser-driven proton bursts
journal, February 2016

  • Dromey, B.; Coughlan, M.; Senje, L.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10642

Invited Review Article: “Hands-on” laser-driven ion acceleration: A primer for laser-driven source development and potential applications
journal, July 2016

  • Schreiber, J.; Bolton, P. R.; Parodi, K.
  • Review of Scientific Instruments, Vol. 87, Issue 7
  • DOI: 10.1063/1.4959198

Ion beam annealing of semiconductors
journal, July 1980

  • Hodgson, R. T.; Baglin, J. E. E.; Pal, R.
  • Applied Physics Letters, Vol. 37, Issue 2
  • DOI: 10.1063/1.91819

Time-resolved electron kinetics in swift heavy ion irradiated solids
journal, August 2015


Local formation of nitrogen-vacancy centers in diamond by swift heavy ions
journal, December 2014

  • Schwartz, J.; Aloni, S.; Ogletree, D. F.
  • Journal of Applied Physics, Vol. 116, Issue 21
  • DOI: 10.1063/1.4903075

Irradiation of materials with short, intense ion pulses at NDCX-II
journal, May 2017


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Pathways to exotic metastable silicon allotropes
journal, December 2016

  • Haberl, Bianca; Strobel, Timothy A.; Bradby, Jodie E.
  • Applied Physics Reviews, Vol. 3, Issue 4
  • DOI: 10.1063/1.4962984