skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on September 18, 2018

Title: Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO 2

In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg 2+ and Al 3+ into electrode materials remains an elusive goal. In this work, we demonstrate a new strategy to achieve reversible Mg 2+ and Al 3+ insertion in anatase TiO 2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO 2. In conclusion, this result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials providing a new strategy for the chemical design of materials for practical multivalent batteries.
Authors:
 [1] ;  [2] ; ORCiD logo [3] ;  [4] ; ORCiD logo [4] ;  [5] ;  [6] ;  [7] ; ORCiD logo [2] ;  [8] ;  [8] ;  [9] ; ORCiD logo [9] ;  [1] ; ORCiD logo [2]
  1. Technical University Berlin (Germany). The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division
  2. Sorbonne Universités, Laboratoire PHENIX, Paris (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E) (France)
  3. University of Bath (United Kingdom). Dept. of Chemistry
  4. Université Bretagne Loire, Université du Maine, UMR CNRS, Institut des Molécules et des Matériaux du Mans (IMMM), Avenue Olivier Messiaen (France)
  5. Réseau sur le Stockage Electrochimique de l’Energie (RS2E) (France); Université de Picardie Jules Verne (France). Laboratoire de Réactivité et Chimie des Solides
  6. ALISTORE-European Research Institute (France); Achtseweg Noord 5 (the Netherlands). Thermo Fisher Scientific, Materials and Structural Analysis
  7. Réseau sur le Stockage Electrochimique de l’Energie (RS2E) (France); ALISTORE-European Research Institute (France)
  8. Sorbonne Universités, Laboratoire PHENIX, Paris (France)
  9. Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division, Advanced Photon Source
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 16; Journal Issue: 11; Journal ID: ISSN 1476-1122
Publisher:
Nature Publishing Group
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division; Bundesministerium für Bildung und Forschung (BMBF); Agence Nationale de la recherche (ANR)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 25 ENERGY STORAGE; Batteries; Solid-state chemistry
OSTI Identifier:
1415479