skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Liquid metal–organic frameworks

Abstract

Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]
  1. PSL Research Univ., Paris (France). Inst. de Recherche de Chimie Paris; Air Liquide, Saclay, Jouy-en-Josas, Paris (France). Centre de Recherche Paris
  2. Air Liquide, Saclay, Jouy-en-Josas, Paris (France). Centre de Recherche Paris
  3. Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division
  4. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab., ISIS Neutron Source
  5. Univ. of Cambridge (United Kingdom). Dept. of Materials Science and Metallurgy
  6. PSL Research Univ., Paris (France). Inst. de Recherche de Chimie Paris
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
United Kingdom Science and Technology Facilities Council; USDOE Office of Science - Office of Basic Energy Sciences - Scientific User Facilities Division
OSTI Identifier:
1415474
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 16; Journal Issue: 11; Journal ID: ISSN 1476-1122
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Gaillac, Romain, Pullumbi, Pluton, Beyer, Kevin A., Chapman, Karena W., Keen, David A., Bennett, Thomas D., and Coudert, Francois-Xavier. Liquid metal–organic frameworks. United States: N. p., 2017. Web. https://doi.org/10.1038/nmat4998.
Gaillac, Romain, Pullumbi, Pluton, Beyer, Kevin A., Chapman, Karena W., Keen, David A., Bennett, Thomas D., & Coudert, Francois-Xavier. Liquid metal–organic frameworks. United States. https://doi.org/10.1038/nmat4998
Gaillac, Romain, Pullumbi, Pluton, Beyer, Kevin A., Chapman, Karena W., Keen, David A., Bennett, Thomas D., and Coudert, Francois-Xavier. Mon . "Liquid metal–organic frameworks". United States. https://doi.org/10.1038/nmat4998. https://www.osti.gov/servlets/purl/1415474.
@article{osti_1415474,
title = {Liquid metal–organic frameworks},
author = {Gaillac, Romain and Pullumbi, Pluton and Beyer, Kevin A. and Chapman, Karena W. and Keen, David A. and Bennett, Thomas D. and Coudert, Francois-Xavier},
abstractNote = {Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.},
doi = {10.1038/nmat4998},
journal = {Nature Materials},
number = 11,
volume = 16,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 100 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Porosity in metal–organic framework glasses
journal, January 2016

  • Thornton, A. W.; Jelfs, K. E.; Konstas, K.
  • Chemical Communications, Vol. 52, Issue 19
  • DOI: 10.1039/C5CC10072K

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion
journal, February 2016

  • Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe
  • Nature Chemistry, Vol. 8, Issue 5
  • DOI: 10.1038/nchem.2450

Porous organic cages: soluble, modular and molecular pores
journal, July 2016


Interplay between defects, disorder and flexibility in metal-organic frameworks
journal, December 2016

  • Bennett, Thomas D.; Cheetham, Anthony K.; Fuchs, Alain H.
  • Nature Chemistry, Vol. 9, Issue 1
  • DOI: 10.1038/nchem.2691

Ionic liquids and their solid-state analogues as materials for energy generation and storage
journal, January 2016

  • MacFarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.
  • Nature Reviews Materials, Vol. 1, Issue 2
  • DOI: 10.1038/natrevmats.2015.5

Ion Conductivity and Transport by Porous Coordination Polymers and Metal–Organic Frameworks
journal, June 2013

  • Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu
  • Accounts of Chemical Research, Vol. 46, Issue 11
  • DOI: 10.1021/ar300291s

Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials
journal, December 2011

  • Martin, Richard Luis; Smit, Berend; Haranczyk, Maciej
  • Journal of Chemical Information and Modeling, Vol. 52, Issue 2
  • DOI: 10.1021/ci200386x

Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites
journal, December 2016

  • Yoon, Ji Woong; Chang, Hyunju; Lee, Seung-Joon
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4825

Flexible metal–organic frameworks
journal, January 2014

  • Schneemann, A.; Bon, V.; Schwedler, I.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00101J

Molecular Simulation Study of Interactions of Carbon Dioxide and Water with Ionic Liquids
journal, July 2004

  • Deschamps, Johnny; Costa Gomes, Margarida F.; Pádua, Agílio A. H.
  • ChemPhysChem, Vol. 5, Issue 7
  • DOI: 10.1002/cphc.200400097

Design and Generation of Extended Zeolitic Metal–Organic Frameworks (ZMOFs): Synthesis and Crystal Structures of Zinc(II) Imidazolate Polymers with Zeolitic Topologies
journal, May 2007

  • Tian, Yun-Qi; Zhao, Yu-Ming; Chen, Zhen-Xia
  • Chemistry - A European Journal, Vol. 13, Issue 15, p. 4146-4154
  • DOI: 10.1002/chem.200700181

Investigation of structure and dynamics of the hydrated metal–organic framework MIL-53(Cr) using first-principles molecular dynamics
journal, January 2013

  • Haigis, Volker; Coudert, François-Xavier; Vuilleumier, Rodolphe
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 43
  • DOI: 10.1039/c3cp53126k

Hybrid glasses from strong and fragile metal-organic framework liquids
journal, August 2015

  • Bennett, Thomas D.; Tan, Jin-Chong; Yue, Yuanzheng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9079

Lindemann measures for the solid-liquid phase transition
journal, May 2007

  • Chakravarty, Charusita; Debenedetti, Pablo G.; Stillinger, Frank H.
  • The Journal of Chemical Physics, Vol. 126, Issue 20
  • DOI: 10.1063/1.2737054

Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
journal, June 2006

  • Park, K. S.; Ni, Z.; Cote, A. P.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 27, p. 10186-10191
  • DOI: 10.1073/pnas.0602439103

Extreme Flexibility in a Zeolitic Imidazolate Framework: Porous to Dense Phase Transition in Desolvated ZIF-4
journal, April 2015

  • Wharmby, Michael T.; Henke, Sebastian; Bennett, Thomas D.
  • Angewandte Chemie International Edition, Vol. 54, Issue 22
  • DOI: 10.1002/anie.201410167

Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
journal, April 2005

  • VandeVondele, Joost; Krack, Matthias; Mohamed, Fawzi
  • Computer Physics Communications, Vol. 167, Issue 2
  • DOI: 10.1016/j.cpc.2004.12.014

Structure and Properties of an Amorphous Metal-Organic Framework
journal, March 2010


Structural disorder in molecular framework materials
journal, January 2013

  • Cairns, Andrew B.; Goodwin, Andrew L.
  • Chemical Society Reviews, Vol. 42, Issue 12
  • DOI: 10.1039/c3cs35524a

Enhanced and Optically Switchable Proton Conductivity in a Melting Coordination Polymer Crystal
journal, April 2017

  • Nagarkar, Sanjog S.; Horike, Satoshi; Itakura, Tomoya
  • Angewandte Chemie International Edition, Vol. 56, Issue 18
  • DOI: 10.1002/anie.201700962

Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
journal, February 2012


Reversible Solid-to-Liquid Phase Transition of Coordination Polymer Crystals
journal, January 2015

  • Umeyama, Daiki; Horike, Satoshi; Inukai, Munehiro
  • Journal of the American Chemical Society, Vol. 137, Issue 2
  • DOI: 10.1021/ja511019u

A comparison of various commonly used correlation functions for describing total scattering
journal, April 2001


A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Atomic and electronic structures of an extremely fragile liquid
journal, December 2014

  • Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6892

Defects in Metal–Organic Frameworks: Challenge or Opportunity?
journal, August 2015


Structure of Liquid SiO 2 : A Measurement by High-Energy X-Ray Diffraction
journal, February 2007


Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes
journal, January 1999


Canonical sampling through velocity rescaling
journal, January 2007

  • Bussi, Giovanni; Donadio, Davide; Parrinello, Michele
  • The Journal of Chemical Physics, Vol. 126, Issue 1
  • DOI: 10.1063/1.2408420

Microscopic mechanisms of equilibrium melting of a solid
journal, November 2014


The glass transition and the distribution of voids in room-temperature ionic liquids: A molecular dynamics study
journal, May 2012

  • Forero-Martinez, N. C.; Cortes-Huerto, R.; Ballone, P.
  • The Journal of Chemical Physics, Vol. 136, Issue 20
  • DOI: 10.1063/1.4723855

A Molecular Jump Mechanism of Water Reorientation
journal, February 2006


Exploiting chemically selective weakness in solids as a route to new porous materials
journal, April 2015

  • Morris, Russell E.; Čejka, Jiří
  • Nature Chemistry, Vol. 7, Issue 5
  • DOI: 10.1038/nchem.2222

Melt-Quenched Glasses of Metal–Organic Frameworks
journal, March 2016

  • Bennett, Thomas D.; Yue, Yuanzheng; Li, Peng
  • Journal of the American Chemical Society, Vol. 138, Issue 10
  • DOI: 10.1021/jacs.5b13220

Separable dual-space Gaussian pseudopotentials
journal, July 1996


Destruction of chemical warfare agents using metal–organic frameworks
journal, March 2015

  • Mondloch, Joseph E.; Katz, Michael J.; Isley III, William C.
  • Nature Materials, Vol. 14, Issue 5
  • DOI: 10.1038/nmat4238

RMCProfile: reverse Monte Carlo for polycrystalline materials
journal, July 2007


Metal–organic framework nanosheets in polymer composite materials for gas separation
journal, November 2014

  • Rodenas, Tania; Luz, Ignacio; Prieto, Gonzalo
  • Nature Materials, Vol. 14, Issue 1
  • DOI: 10.1038/nmat4113

Characterization and comparison of pore landscapes in crystalline porous materials
journal, July 2013

  • Pinheiro, Marielle; Martin, Richard L.; Rycroft, Chris H.
  • Journal of Molecular Graphics and Modelling, Vol. 44
  • DOI: 10.1016/j.jmgm.2013.05.007

Liquids with permanent porosity
journal, November 2015

  • Giri, Nicola; Del Pópolo, Mario G.; Melaugh, Gavin
  • Nature, Vol. 527, Issue 7577
  • DOI: 10.1038/nature16072

On the Molecular Mechanism of Water Reorientation
journal, November 2008

  • Laage, Damien; Hynes, James T.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 45
  • DOI: 10.1021/jp805217u

Ball-Milling-Induced Amorphization of Zeolitic Imidazolate Frameworks (ZIFs) for the Irreversible Trapping of Iodine
journal, April 2013

  • Bennett, Thomas D.; Saines, Paul J.; Keen, David A.
  • Chemistry - A European Journal, Vol. 19, Issue 22
  • DOI: 10.1002/chem.201300216

Methane storage in flexible metal–organic frameworks with intrinsic thermal management
journal, October 2015

  • Mason, Jarad A.; Oktawiec, Julia; Taylor, Mercedes K.
  • Nature, Vol. 527, Issue 7578
  • DOI: 10.1038/nature15732

Extracting the pair distribution function from white-beam X-ray total scattering data
journal, June 2011


Kinetics of ZIF-8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments
journal, June 2016


Amorphous Metal–Organic Frameworks
journal, April 2014

  • Bennett, Thomas D.; Cheetham, Anthony K.
  • Accounts of Chemical Research, Vol. 47, Issue 5
  • DOI: 10.1021/ar5000314

Zeolitic Imidazolate Frameworks: Next-Generation Materials for Energy-Efficient Gas Separations
journal, October 2014

  • Pimentel, Brian R.; Parulkar, Aamena; Zhou, Er-kang
  • ChemSusChem, Vol. 7, Issue 12
  • DOI: 10.1002/cssc.201402647

Porous Liquids
journal, April 2007

  • O'Reilly, Niamh; Giri, Nicola; James, Stuart L.
  • Chemistry - A European Journal, Vol. 13, Issue 11
  • DOI: 10.1002/chem.200700090

Enhanced and Optically Switchable Proton Conductivity in a Melting Coordination Polymer Crystal
journal, April 2017

  • Nagarkar, Sanjog S.; Horike, Satoshi; Itakura, Tomoya
  • Angewandte Chemie, Vol. 129, Issue 18
  • DOI: 10.1002/ange.201700962

Porous Liquids
journal, July 2007


Ab initio phase diagram and nucleation of gallium
journal, May 2020


    Works referencing / citing this record:

    Ultrafast Melting of Metal–Organic Frameworks for Advanced Nanophotonics
    journal, December 2019

    • Kulachenkov, Nikita K.; Bruyere, Stéphanie; Sapchenko, Sergey A.
    • Advanced Functional Materials, Vol. 30, Issue 7
    • DOI: 10.1002/adfm.201908292

    Ultrathin Metal-Organic Framework: An Emerging Broadband Nonlinear Optical Material for Ultrafast Photonics
    journal, June 2018

    • Jiang, Xiantao; Zhang, Liangjing; Liu, Shunxiang
    • Advanced Optical Materials, Vol. 6, Issue 16
    • DOI: 10.1002/adom.201800561

    Metal–Organic Frameworks in Modern Physics: Highlights and Perspectives
    journal, July 2019

    • Mezenov, Yuri A.; Krasilin, Andrei A.; Dzyuba, Vladimir P.
    • Advanced Science, Vol. 6, Issue 17
    • DOI: 10.1002/advs.201900506

    Porous Ionic Liquids or Liquid Metal-Organic Frameworks?
    journal, August 2018

    • Costa Gomes, Margarida; Pison, Laure; Červinka, Ctirad
    • Angewandte Chemie, Vol. 130, Issue 37
    • DOI: 10.1002/ange.201805495

    A Coordinative Solubilizer Method to Fabricate Soft Porous Materials from Insoluble Metal–Organic Polyhedra
    journal, May 2019

    • Carné‐Sánchez, Arnau; Craig, Gavin A.; Larpent, Patrick
    • Angewandte Chemie International Edition, Vol. 58, Issue 19
    • DOI: 10.1002/anie.201901668

    A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids
    journal, February 2020

    • Horike, Satoshi; Nagarkar, Sanjog S.; Ogawa, Tomohiro
    • Angewandte Chemie International Edition, Vol. 59, Issue 17
    • DOI: 10.1002/anie.201911384

    A MOF Glass Membrane for Gas Separation
    journal, January 2020

    • Wang, Yuhan; Jin, Hua; Ma, Qiang
    • Angewandte Chemie International Edition, Vol. 59, Issue 11
    • DOI: 10.1002/anie.201915807

    Supramolecular Organization in Confined Nanospaces
    journal, April 2018


    Flexible ZIFs: probing guest‐induced flexibility with CO 2 , N 2 and Ar adsorption
    journal, March 2019

    • Noguera‐Díaz, Antonio; Villarroel‐Rocha, Jhonny; Ting, Valeska P.
    • Journal of Chemical Technology & Biotechnology, Vol. 94, Issue 12
    • DOI: 10.1002/jctb.5947

    Pressure-Induced Amorphization of MOF-5: A First Principles Study
    journal, July 2018


    Luminescent Pr(III)-Based Coordination Polymer: Syntheses, Structures, N2 and CO2 Adsorption Properties
    journal, September 2019


    Liquid phase blending of metal-organic frameworks
    journal, June 2018


    Metal-organic framework glasses with permanent accessible porosity
    journal, November 2018


    Metal-organic framework crystal-glass composites
    journal, June 2019


    Unraveling the thermodynamic criteria for size-dependent spontaneous phase separation in soft porous crystals
    journal, October 2019

    • Rogge, Sven M. J.; Waroquier, Michel; Van Speybroeck, Veronique
    • Nature Communications, Vol. 10, Issue 1
    • DOI: 10.1038/s41467-019-12754-w

    Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework
    journal, December 2019


    Coordination cages as permanently porous ionic liquids
    journal, February 2020


    Pressure promoted low-temperature melting of metal–organic frameworks
    journal, March 2019


    Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks
    journal, September 2018


    Structural investigations of amorphous metal–organic frameworks formed via different routes
    journal, January 2018

    • Keen, D. A.; Bennett, T. D.
    • Physical Chemistry Chemical Physics, Vol. 20, Issue 11
    • DOI: 10.1039/c7cp08508g

    Pore closure in zeolitic imidazolate frameworks under mechanical pressure
    journal, January 2018

    • Henke, Sebastian; Wharmby, Michael T.; Kieslich, Gregor
    • Chemical Science, Vol. 9, Issue 6
    • DOI: 10.1039/c7sc04952h

    Impact of ambient gases on the mechanism of [Cs 8 Nb 6 O 19 ]-promoted nerve-agent decomposition
    journal, January 2018

    • Kaledin, Alexey L.; Driscoll, Darren M.; Troya, Diego
    • Chemical Science, Vol. 9, Issue 8
    • DOI: 10.1039/c7sc04997h

    3D negative thermal expansion in orthorhombic MIL-68(In)
    journal, January 2018

    • Liu, Zhanning; Li, Qiang; Zhu, He
    • Chemical Communications, Vol. 54, Issue 45
    • DOI: 10.1039/c8cc03219j

    Paraffinic metal–organic polyhedrons: solution-processable porous modules exhibiting three-dimensional molecular order
    journal, January 2018

    • Omoto, Kenichiro; Hosono, Nobuhiko; Gochomori, Mika
    • Chemical Communications, Vol. 54, Issue 53
    • DOI: 10.1039/c8cc03705a

    Structural evolution in a melt-quenched zeolitic imidazolate framework glass during heat-treatment
    journal, January 2019

    • Zhang, Jiayan; Longley, Louis; Liu, Hao
    • Chemical Communications, Vol. 55, Issue 17
    • DOI: 10.1039/c8cc09574d

    Polymorphism of a porous hydrogen bond-assisted ionic organic framework
    journal, January 2018

    • Horváth, Dániel Vajk; Holczbauer, Tamás; Bereczki, Laura
    • CrystEngComm, Vol. 20, Issue 13
    • DOI: 10.1039/c8ce00041g

    Design of solvent-free functional fluids via molecular nanoarchitectonics approaches
    journal, January 2019

    • Shinohara, Akira; Pan, Chengjun; Wang, Lei
    • Molecular Systems Design & Engineering, Vol. 4, Issue 1
    • DOI: 10.1039/c8me00092a

    Porous liquid zeolites: hydrogen bonding-stabilized H-ZSM-5 in branched ionic liquids
    journal, January 2019

    • Li, Peipei; Chen, Hao; Schott, Jennifer A.
    • Nanoscale, Vol. 11, Issue 4
    • DOI: 10.1039/c8nr07337f

    Flux melting of metal–organic frameworks
    journal, January 2019

    • Longley, Louis; Collins, Sean M.; Li, Shichun
    • Chemical Science, Vol. 10, Issue 12
    • DOI: 10.1039/c8sc04044c

    Environmentally friendly synthesis of flexible MOFs M(NA) 2 (M = Zn, Co, Cu, Cd) with large and regenerable ammonia capacity
    journal, January 2018

    • Chen, Yang; Shan, Bohan; Yang, Chengyin
    • Journal of Materials Chemistry A, Vol. 6, Issue 21
    • DOI: 10.1039/c8ta02845a

    Metal–organic framework nanosheets (MONs): a new dimension in materials chemistry
    journal, January 2018

    • Ashworth, David J.; Foster, Jonathan A.
    • Journal of Materials Chemistry A, Vol. 6, Issue 34
    • DOI: 10.1039/c8ta03159b

    Porous purple glass – a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework
    journal, January 2019

    • Frentzel-Beyme, Louis; Kloß, Marvin; Pallach, Roman
    • Journal of Materials Chemistry A, Vol. 7, Issue 3
    • DOI: 10.1039/c8ta08016j

    Novel metal–organic framework materials: blends, liquids, glasses and crystal–glass composites
    journal, January 2019

    • Tuffnell, Joshua M.; Ashling, Christopher W.; Hou, Jingwei
    • Chemical Communications, Vol. 55, Issue 60
    • DOI: 10.1039/c9cc01468c

    Get the light out: nanoscaling MOFs for luminescence sensing and optical applications
    journal, January 2019

    • Wang, Timothy C.; Doty, F. Patrick; Benin, Annabelle I.
    • Chemical Communications, Vol. 55, Issue 32
    • DOI: 10.1039/c9cc01673b

    Crystal melting and glass formation in copper thiocyanate based coordination polymers
    journal, January 2019

    • Nagarkar, Sanjog S.; Kurasho, Haruna; Duong, Nghia Tuan
    • Chemical Communications, Vol. 55, Issue 38
    • DOI: 10.1039/c9cc02172h

    A polyether amine modified metal organic framework enhanced the CO 2 adsorption capacity of room temperature porous liquids
    journal, January 2019

    • Zhao, Xuemei; Yuan, Yihui; Li, Peipei
    • Chemical Communications, Vol. 55, Issue 87
    • DOI: 10.1039/c9cc07243h

    X-ray radiation-induced amorphization of metal–organic frameworks
    journal, January 2019

    • Widmer, Remo N.; Lampronti, Giulio I.; Casati, Nicola
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 23
    • DOI: 10.1039/c9cp01463b

    Lithium ion diffusion mechanism in covalent organic framework based solid state electrolyte
    journal, January 2019

    • Zhang, Kecheng; Zhang, Bingkai; Weng, Mouyi
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 19
    • DOI: 10.1039/c9cp02117e

    Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis
    journal, January 2020

    • Nath, Bikash Dev; Takaishi, Kazuto; Ema, Tadashi
    • Catalysis Science & Technology, Vol. 10, Issue 1
    • DOI: 10.1039/c9cy01894h

    Relating structural disorder and melting in complex mixed ligand zeolitic imidazolate framework glasses
    journal, January 2020

    • Ríos Gómez, María Laura; Lampronti, Giulio Isacco; Yang, Yongjian
    • Dalton Transactions, Vol. 49, Issue 3
    • DOI: 10.1039/c9dt03559a

    A solvent-free porous liquid comprising hollow nanorod–polymer surfactant conjugates
    journal, January 2019

    • Kumar, Raj; Dhasaiyan, Prabhu; Naveenkumar, Parinamipura M.
    • Nanoscale Advances, Vol. 1, Issue 10
    • DOI: 10.1039/c9na00353c

    Accelerated robotic discovery of type II porous liquids
    journal, January 2019

    • Kearsey, Rachel J.; Alston, Ben M.; Briggs, Michael E.
    • Chemical Science, Vol. 10, Issue 41
    • DOI: 10.1039/c9sc03316e

    Mechanical properties of metal–organic frameworks
    journal, January 2019

    • Redfern, Louis R.; Farha, Omar K.
    • Chemical Science, Vol. 10, Issue 46
    • DOI: 10.1039/c9sc04249k

    Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks
    journal, January 2020

    • Bumstead, Alice M.; Ríos Gómez, María Laura; Thorne, Michael F.
    • CrystEngComm, Vol. 22, Issue 21
    • DOI: 10.1039/d0ce00408a

    Phase diagrams of liquid-phase mixing in multi-component metal-organic framework glasses constructed by quantitative elemental nano-tomography
    journal, September 2019

    • Collins, Sean M.; MacArthur, Katherine E.; Longley, Louis
    • APL Materials, Vol. 7, Issue 9
    • DOI: 10.1063/1.5120093

    Survey of transient process during melting of silver below the equilibrium melting point
    journal, December 2019

    • Liu, Miao; Fu, Qinqin; Wang, Xueliang
    • The Journal of Chemical Physics, Vol. 151, Issue 24
    • DOI: 10.1063/1.5133080

    Modelling of framework materials at multiple scales: current practices and open questions
    journal, May 2019

    • Fraux, Guillaume; Chibani, Siwar; Coudert, François-Xavier
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2149
    • DOI: 10.1098/rsta.2018.0220

    Structural, electronic, and dielectric properties of a large random network model of amorphous zeolitic imidazolate frameworks and its analogues
    journal, January 2019

    • Wang, Hailong; Li, Neng; Hu, Zhongbo
    • Journal of the American Ceramic Society, Vol. 102, Issue 8
    • DOI: 10.1111/jace.16308

    A metal-organic framework with ultrahigh glass-forming ability
    journal, March 2018


    Distinct signature of local tetrahedral ordering in the scattering function of covalent liquids and glasses
    journal, March 2019


    Ultrahigh-field 67 Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses
    journal, March 2020


    Optical properties of a melt-quenched metal–organic framework glass
    journal, January 2019

    • Qiao, Ang; Tao, Haizheng; Carson, Michael P.
    • Optics Letters, Vol. 44, Issue 7
    • DOI: 10.1364/ol.44.001623

    A Coordinative Solubilizer Method to Fabricate Soft Porous Materials from Insoluble Metal–Organic Polyhedra
    journal, February 2019

    • Carné‐Sánchez, Arnau; Craig, Gavin A.; Larpent, Patrick
    • Angewandte Chemie, Vol. 131, Issue 19
    • DOI: 10.1002/ange.201901668

    A MOF Glass Membrane for Gas Separation
    journal, March 2020


    Porous Ionic Liquids or Liquid Metal-Organic Frameworks?
    journal, August 2018

    • Costa Gomes, Margarida; Pison, Laure; Červinka, Ctirad
    • Angewandte Chemie International Edition, Vol. 57, Issue 37
    • DOI: 10.1002/anie.201805495

    Water‐Induced Breaking of the Coulombic Ordering in a Room‐Temperature Ionic Liquid Metal Complex
    journal, May 2019

    • Hiraoka, Tomoaki; Ohtani, Ryo; Nakamura, Masaaki
    • Chemistry – A European Journal, Vol. 25, Issue 31
    • DOI: 10.1002/chem.201900069

    Laser printing of optically resonant hollow crystalline carbon nanostructures from 1D and 2D metal–organic frameworks
    journal, January 2019

    • Mingabudinova, Leila R.; Zalogina, Anastasiia S.; Krasilin, Andrei A.
    • Nanoscale, Vol. 11, Issue 21
    • DOI: 10.1039/c9nr02167a

    Mechanochemical synthesis of mixed metal, mixed linker, glass-forming metal–organic frameworks
    journal, January 2020

    • Thorne, Michael F.; Gómez, María Laura Ríos; Bumstead, Alice M.
    • Green Chemistry, Vol. 22, Issue 8
    • DOI: 10.1039/d0gc00546k

    A metal-organic framework with ultrahigh glass-forming ability.
    text, January 2018

    • Qiao, Ang; Bennett, Thomas; Tao, Haizheng
    • Apollo - University of Cambridge Repository
    • DOI: 10.17863/cam.27075

    Liquid phase blending of metal-organic frameworks.
    text, January 2018

    • Longley, Louis; Collins, Sean; Zhou, Chao
    • Apollo - University of Cambridge Repository
    • DOI: 10.17863/cam.27441

    Relating structural disorder and melting in complex mixed ligand zeolitic imidazolate framework glasses.
    text, January 2020

    • Ríos Gómez, María Laura; Lampronti, Giulio Isacco; Yang, Yongjian
    • Apollo - University of Cambridge Repository
    • DOI: 10.17863/cam.47032

    Pore closure in zeolitic imidazolate frameworks under mechanical pressure
    text, January 2018

    • Henke, Sebastian; Wharmby, Michael Thomas; Kieslich, Gregor
    • Deutsches Elektronen-Synchrotron, DESY, Hamburg
    • DOI: 10.3204/pubdb-2018-05936