DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond

Abstract

The Materials Genome Initiative (MGI) has heralded a sea change in the philosophy of materials design. In an increasing number of applications, the successful deployment of novel materials has benefited from the use of computational methodologies, data descriptors, and machine learning. Polymers have long suffered from a lack of data on electronic, mechanical, and dielectric properties across large chemical spaces, causing a stagnation in the set of suitable candidates for various applications. Extensive efforts over the last few years have seen the fruitful application of MGI principles toward the accelerated discovery of attractive polymer dielectrics for capacitive energy storage. Here, we review these efforts, highlighting the importance of computational data generation and screening, targeted synthesis and characterization, polymer fingerprinting and machine-learning prediction models, and the creation of an online knowledgebase to guide ongoing and future polymer discovery and design. We lay special emphasis on the fingerprinting of polymers in terms of their genome or constituent atomic and molecular fragments, an idea that pays homage to the pioneers of the human genome project who identified the basic building blocks of the human DNA. By scoping the polymer genome, we present an essential roadmap for the design of polymer dielectrics, and providemore » future perspectives and directions for expansions to other polymer subclasses and properties.« less

Authors:
 [1];  [2];  [2];  [2]; ORCiD logo [3]; ORCiD logo [4];  [2]
  1. Univ. of Connecticut, Storrs, CT (United States); Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Univ. of Connecticut, Storrs, CT (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany)
  4. Corning Research & Development Corp., Corning, NY (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
Universities/Institutions; USDOE; US Department of the Navy, Office of Naval Research (ONR); Alexander von Humboldt Foundation
OSTI Identifier:
1415426
Alternate Identifier(s):
OSTI ID: 1542587
Report Number(s):
LA-UR-17-29595
Journal ID: ISSN 1369-7021; TRN: US1800819
Grant/Contract Number:  
AC52-06NA25396; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Materials Today
Additional Journal Information:
Journal Volume: 21; Journal Issue: 7; Journal ID: ISSN 1369-7021
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Materials informatics; density functional theory; machine learning; materials database

Citation Formats

Mannodi-Kanakkithodi, Arun, Chandrasekaran, Anand, Kim, Chiho, Huan, Tran Doan, Pilania, Ghanshyam, Botu, Venkatesh, and Ramprasad, Rampi. Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond. United States: N. p., 2017. Web. doi:10.1016/j.mattod.2017.11.021.
Mannodi-Kanakkithodi, Arun, Chandrasekaran, Anand, Kim, Chiho, Huan, Tran Doan, Pilania, Ghanshyam, Botu, Venkatesh, & Ramprasad, Rampi. Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond. United States. https://doi.org/10.1016/j.mattod.2017.11.021
Mannodi-Kanakkithodi, Arun, Chandrasekaran, Anand, Kim, Chiho, Huan, Tran Doan, Pilania, Ghanshyam, Botu, Venkatesh, and Ramprasad, Rampi. Tue . "Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond". United States. https://doi.org/10.1016/j.mattod.2017.11.021. https://www.osti.gov/servlets/purl/1415426.
@article{osti_1415426,
title = {Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond},
author = {Mannodi-Kanakkithodi, Arun and Chandrasekaran, Anand and Kim, Chiho and Huan, Tran Doan and Pilania, Ghanshyam and Botu, Venkatesh and Ramprasad, Rampi},
abstractNote = {The Materials Genome Initiative (MGI) has heralded a sea change in the philosophy of materials design. In an increasing number of applications, the successful deployment of novel materials has benefited from the use of computational methodologies, data descriptors, and machine learning. Polymers have long suffered from a lack of data on electronic, mechanical, and dielectric properties across large chemical spaces, causing a stagnation in the set of suitable candidates for various applications. Extensive efforts over the last few years have seen the fruitful application of MGI principles toward the accelerated discovery of attractive polymer dielectrics for capacitive energy storage. Here, we review these efforts, highlighting the importance of computational data generation and screening, targeted synthesis and characterization, polymer fingerprinting and machine-learning prediction models, and the creation of an online knowledgebase to guide ongoing and future polymer discovery and design. We lay special emphasis on the fingerprinting of polymers in terms of their genome or constituent atomic and molecular fragments, an idea that pays homage to the pioneers of the human genome project who identified the basic building blocks of the human DNA. By scoping the polymer genome, we present an essential roadmap for the design of polymer dielectrics, and provide future perspectives and directions for expansions to other polymer subclasses and properties.},
doi = {10.1016/j.mattod.2017.11.021},
journal = {Materials Today},
number = 7,
volume = 21,
place = {United States},
year = {Tue Dec 19 00:00:00 EST 2017},
month = {Tue Dec 19 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 111 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) The nucleic acid sequence that makes up the human DNA and formed the basis of the Human Genome Project. (b) The polymer genome concept expressed in terms of building blocks that make up a polymer chemical structure.

Save / Share:

Works referenced in this record:

The Deformation and Ageing of Mild Steel: III Discussion of Results
journal, September 1951


Representing potential energy surfaces by high-dimensional neural network potentials
journal, April 2014


Adaptive machine learning framework to accelerate ab initio molecular dynamics
journal, December 2014

  • Botu, Venkatesh; Ramprasad, Rampi
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24836

Inhomogeneous Electron Gas
journal, November 1964


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Rational design of all organic polymer dielectrics
journal, September 2014

  • Sharma, Vinit; Wang, Chenchen; Lorenzini, Robert G.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5845

Rational Co-Design of Polymer Dielectrics for Energy Storage
journal, May 2016

  • Mannodi-Kanakkithodi, Arun; Treich, Gregory M.; Huan, Tran Doan
  • Advanced Materials, Vol. 28, Issue 30
  • DOI: 10.1002/adma.201600377

Advanced polymeric dielectrics for high energy density applications
journal, October 2016


Poly(dimethyltin glutarate) as a Prospective Material for High Dielectric Applications
journal, November 2014

  • Baldwin, Aaron F.; Ma, Rui; Mannodi-Kanakkithodi, Arun
  • Advanced Materials, Vol. 27, Issue 2
  • DOI: 10.1002/adma.201404162

Rational Design of Organotin Polyesters
journal, April 2015

  • Baldwin, Aaron F.; Huan, Tran Doan; Ma, Rui
  • Macromolecules, Vol. 48, Issue 8
  • DOI: 10.1021/ma502424r

Effect of Incorporating Aromatic and Chiral Groups on the Dielectric Properties of Poly(dimethyltin esters)
journal, November 2014

  • Baldwin, Aaron F.; Ma, Rui; Huan, Tran Doan
  • Macromolecular Rapid Communications, Vol. 35, Issue 24
  • DOI: 10.1002/marc.201400507

Machine Learning Strategy for Accelerated Design of Polymer Dielectrics
journal, February 2016

  • Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep20952

A polymer dataset for accelerated property prediction and design
journal, March 2016

  • Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho
  • Scientific Data, Vol. 3, Issue 1
  • DOI: 10.1038/sdata.2016.12

Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

Crystal structures and shape-memory behaviour of NiTi
journal, April 2003

  • Huang, Xiangyang; Ackland, Graeme J.; Rabe, Karin M.
  • Nature Materials, Vol. 2, Issue 5
  • DOI: 10.1038/nmat884

QSAR Modeling: Where Have You Been? Where Are You Going To?
journal, January 2014

  • Cherkasov, Artem; Muratov, Eugene N.; Fourches, Denis
  • Journal of Medicinal Chemistry, Vol. 57, Issue 12
  • DOI: 10.1021/jm4004285

A review of feature selection techniques in bioinformatics
journal, August 2007


Polymer Informatics: Opportunities and Challenges
journal, September 2017


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Machine learning in materials informatics: recent applications and prospects
journal, December 2017

  • Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0056-5

Phonons and related crystal properties from density-functional perturbation theory
journal, July 2001

  • Baroni, Stefano; de Gironcoli, Stefano; Dal Corso, Andrea
  • Reviews of Modern Physics, Vol. 73, Issue 2
  • DOI: 10.1103/RevModPhys.73.515

Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Computational strategies for polymer dielectrics design
journal, February 2014


Efficient moves for global geometry optimization methods and their application to binary systems
journal, January 2011

  • Sicher, Michael; Mohr, Stephan; Goedecker, Stefan
  • The Journal of Chemical Physics, Vol. 134, Issue 4
  • DOI: 10.1063/1.3530590

From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown
journal, February 2016


Structure classification and melting temperature prediction in octet AB solids via machine learning
journal, June 2015


Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective
journal, December 2015

  • Pilania, G.; Gubernatis, J. E.; Lookman, T.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep17504

A general-purpose machine learning framework for predicting properties of inorganic materials
journal, August 2016


Prediction of the glass transition temperature of polymers
journal, February 1970


Machine learning bandgaps of double perovskites
journal, January 2016

  • Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19375

Learning scheme to predict atomic forces and accelerate materials simulations
journal, September 2015


A study of adatom ripening on an Al (1 1 1) surface with machine learning force fields
journal, March 2017


Machine Learning Force Fields: Construction, Validation, and Outlook
journal, December 2016


A universal strategy for the creation of machine learning-based atomistic force fields
journal, September 2017


Method for relating the structure and properties of chemical compounds
journal, March 1974

  • Adamson, George W.; Bush, Judith A.
  • Nature, Vol. 248, Issue 5447
  • DOI: 10.1038/248406a0

The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models
journal, April 2003

  • Tropsha, Alexander; Gramatica, Paola; Gombar, Vijay?K.
  • QSAR & Combinatorial Science, Vol. 22, Issue 1
  • DOI: 10.1002/qsar.200390007

Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

Critical assessment of regression-based machine learning methods for polymer dielectrics
journal, December 2016


Accelerated materials property predictions and design using motif-based fingerprints
journal, July 2015

  • Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Ramprasad, Rampi
  • Physical Review B, Vol. 92, Issue 1
  • DOI: 10.1103/PhysRevB.92.014106

Mining Materials Design Rules from Data: The Example of Polymer Dielectrics
journal, October 2017


Prediction of polymer properties using infinite chain descriptors (ICD) and machine learning: Toward optimized dielectric polymeric materials
journal, August 2016

  • Wu, K.; Sukumar, N.; Lanzillo, N. A.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 54, Issue 20
  • DOI: 10.1002/polb.24117

Elucidating multi-physics interactions in suspensions for the design of polymeric dispersants: a hierarchical machine learning approach
journal, January 2017

  • Menon, Aditya; Gupta, Chetali; Perkins, Kedar M.
  • Molecular Systems Design & Engineering, Vol. 2, Issue 3
  • DOI: 10.1039/C7ME00027H

Ab-initio simulations of materials using VASP: Density-functional theory and beyond
journal, October 2008

  • Hafner, Jürgen
  • Journal of Computational Chemistry, Vol. 29, Issue 13
  • DOI: 10.1002/jcc.21057

Optimization of Organotin Polymers for Dielectric Applications
journal, August 2016

  • Treich, Gregory M.; Nasreen, Shamima; Mannodi Kanakkithodi, Arun
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 33
  • DOI: 10.1021/acsami.6b04091

Statistical inference and adaptive design for materials discovery
journal, June 2017

  • Lookman, Turab; Balachandran, Prasanna V.; Xue, Dezhen
  • Current Opinion in Solid State and Materials Science, Vol. 21, Issue 3
  • DOI: 10.1016/j.cossms.2016.10.002

The Knowledge Gradient Algorithm for a General Class of Online Learning Problems
journal, February 2012

  • Ryzhov, Ilya O.; Powell, Warren B.; Frazier, Peter I.
  • Operations Research, Vol. 60, Issue 1
  • DOI: 10.1287/opre.1110.0999

Efficient Global Optimization of Expensive Black-Box Functions
journal, January 1998

  • Jones, Donald R.; Schonlau, Matthias; Welch, William J.
  • Journal of Global Optimization, Vol. 13, Issue 4, p. 455-492
  • DOI: 10.1023/A:1008306431147

Infomax Strategies for an Optimal Balance Between Exploration and Exploitation
journal, April 2016

  • Reddy, Gautam; Celani, Antonio; Vergassola, Massimo
  • Journal of Statistical Physics, Vol. 163, Issue 6
  • DOI: 10.1007/s10955-016-1521-0

Universal Relationship between Conductivity and Solvation-Site Connectivity in Ether-Based Polymer Electrolytes
journal, July 2016


Recent advances in high performance donor-acceptor polymers for organic photovoltaics
journal, July 2017


Competition between deformability and charge transport in semiconducting polymers for flexible and stretchable electronics
journal, June 2016

  • Printz, Adam D.; Lipomi, Darren J.
  • Applied Physics Reviews, Vol. 3, Issue 2
  • DOI: 10.1063/1.4947428

3D Printing of Shape Memory Polymers for Flexible Electronic Devices
journal, September 2015

  • Zarek, Matt; Layani, Michael; Cooperstein, Ido
  • Advanced Materials, Vol. 28, Issue 22
  • DOI: 10.1002/adma.201503132

Recent Progress in High Refractive Index Polymers
journal, February 2015

  • Higashihara, Tomoya; Ueda, Mitsuru
  • Macromolecules, Vol. 48, Issue 7
  • DOI: 10.1021/ma502569r

Works referencing / citing this record:

Machine-learned impurity level prediction for semiconductors: the example of Cd-based chalcogenides
journal, April 2020

  • Mannodi-Kanakkithodi, Arun; Toriyama, Michael Y.; Sen, Fatih G.
  • npj Computational Materials, Vol. 6, Issue 1
  • DOI: 10.1038/s41524-020-0296-7

Active-learning and materials design: the example of high glass transition temperature polymers
journal, June 2019

  • Kim, Chiho; Chandrasekaran, Anand; Jha, Anurag
  • MRS Communications, Vol. 9, Issue 3
  • DOI: 10.1557/mrc.2019.78

Soft Matter Informatics: Current Progress and Challenges
journal, November 2018

  • Peerless, James S.; Milliken, Nina J. B.; Oweida, Thomas J.
  • Advanced Theory and Simulations, Vol. 2, Issue 1
  • DOI: 10.1002/adts.201800129

Machine learning enables polymer cloud-point engineering via inverse design
journal, July 2019

  • Kumar, Jatin N.; Li, Qianxiao; Tang, Karen Y. T.
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0209-9

Solving the electronic structure problem with machine learning
journal, February 2019

  • Chandrasekaran, Anand; Kamal, Deepak; Batra, Rohit
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0162-7

Facile Synthesis of Poly(Glycidyl Ether)s with Ionic Pendant Groups by Thiol‐Ene Reactions
journal, October 2019

  • Hatakeyama‐Sato, Kan; Kimura, Satoshi; Matsumoto, Satoshi
  • Macromolecular Rapid Communications, Vol. 41, Issue 1
  • DOI: 10.1002/marc.201900399

Designing promising molecules for organic solar cells via machine learning assisted virtual screening
journal, January 2019

  • Sahu, Harikrishna; Yang, Feng; Ye, Xiaobo
  • Journal of Materials Chemistry A, Vol. 7, Issue 29
  • DOI: 10.1039/c9ta04097h

Effect of Constituent Materials on Composite Performance: Exploring Design Strategies via Machine Learning
journal, April 2019


Pressure-stabilized binary compounds of magnesium and silicon
journal, February 2018


Emerging role of machine learning in light-matter interaction
journal, September 2019


Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges
journal, January 2020


Review of Polymer‐Based Nanodielectric Exploration and Film Scale‐Up for Advanced Capacitors
journal, April 2019


Silicon‐containing fluorenylacetylene resins with low curing temperature and high thermal stability
journal, July 2019

  • Lu, Liewei; Guo, Kangkang; Zhu, Junli
  • Journal of Applied Polymer Science, Vol. 136, Issue 48
  • DOI: 10.1002/app.48262

Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
journal, June 2019


Sn‐Polyester/Polyimide Hybrid Flexible Free‐Standing Film as a Tunable Dielectric Material
journal, November 2018

  • Nasreen, Shamima; Baczkowski, Matthew L.; Treich, Gregory M.
  • Macromolecular Rapid Communications, Vol. 40, Issue 3
  • DOI: 10.1002/marc.201800679

Predicting Materials Properties with Little Data Using Shotgun Transfer Learning
journal, September 2019


Emerging role of machine learning in light-matter interaction
journal, September 2019


Off-the-shelf deep learning is not enough: parsimony, Bayes and causality
preprint, January 2020