skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rhodotorula taiwanensis MD1149 produces hypoacetylated PEFA compounds with increased surface activity compared to Rhodotorula babjevae MD1169

Abstract

Biosurfactants have several desirable characteristics in the industrial sector: detergency, antimicrobial effects, skin hydration, and emulsibility. Several yeast glycolipids are currently being utilized in these capacities: sophorolipids, ustilagic acid, and mannosylerythritol lipids (MELs). An emerging class of glycolipids, termed polyol esters of fatty acids (PEFA), have recently been reported for Rhodotorula babjevae, a basidiomycetous yeast species that secretes hyperacetylated congeners of PEFA (typically with 3–6 acetylation modifications). While screening Rhodotorula species for surfactant production, we identified a new environmental isolate identified as Rhodotorula taiwanensis MD1149 that dropped the surface tension of the liquid medium, indicating that it produced a potent biosurfactant. Acid depolymerization of the purified biosurfactants, followed by gas chromatography-mass spectrometry (GC-MS) analysis revealed that the biosurfactants were composed of PEFA compounds composed mainly of mannitol and arabitol esters of 3-hydroxy fatty acid, 3-methoxy fatty acid, and fatty acids with a single double bond; chain lengths were mainly C16 and C18. Liquid chromatography-mass spectrometry (LC-MS) confirmed the predicted accurate mass of these compounds. Interestingly, PEFA compounds produced by Rhodotorula taiwanensis MD1149 were more surface active due to their hypoacetylation profile (0–4 acetylation modifications) compared to Rhodotorula babjevae MD1169. These disparate surface active properties, based on acetylation, change the hydrophilic-lipophilicmore » balance (HLB) of these compounds, and their potential utility within industrial applications.« less

Authors:
ORCiD logo; ; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1415334
Alternate Identifier(s):
OSTI ID: 1515357
Report Number(s):
LLNL-JRNL-708528
Journal ID: ISSN 1932-6203; 10.1371/journal.pone.0190373
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Published Article
Journal Name:
PLoS ONE
Additional Journal Information:
Journal Name: PLoS ONE Journal Volume: 13 Journal Issue: 1; Journal ID: ISSN 1932-6203
Publisher:
Public Library of Science (PLoS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Lyman, Mathew, Rubinfeld, Bonnee, Leif, Roald, Mulcahy, Heather, Dugan, Lawrence, Souza, Brian, and Du, ed., Chenyu. Rhodotorula taiwanensis MD1149 produces hypoacetylated PEFA compounds with increased surface activity compared to Rhodotorula babjevae MD1169. United States: N. p., 2018. Web. doi:10.1371/journal.pone.0190373.
Lyman, Mathew, Rubinfeld, Bonnee, Leif, Roald, Mulcahy, Heather, Dugan, Lawrence, Souza, Brian, & Du, ed., Chenyu. Rhodotorula taiwanensis MD1149 produces hypoacetylated PEFA compounds with increased surface activity compared to Rhodotorula babjevae MD1169. United States. doi:10.1371/journal.pone.0190373.
Lyman, Mathew, Rubinfeld, Bonnee, Leif, Roald, Mulcahy, Heather, Dugan, Lawrence, Souza, Brian, and Du, ed., Chenyu. Tue . "Rhodotorula taiwanensis MD1149 produces hypoacetylated PEFA compounds with increased surface activity compared to Rhodotorula babjevae MD1169". United States. doi:10.1371/journal.pone.0190373.
@article{osti_1415334,
title = {Rhodotorula taiwanensis MD1149 produces hypoacetylated PEFA compounds with increased surface activity compared to Rhodotorula babjevae MD1169},
author = {Lyman, Mathew and Rubinfeld, Bonnee and Leif, Roald and Mulcahy, Heather and Dugan, Lawrence and Souza, Brian and Du, ed., Chenyu},
abstractNote = {Biosurfactants have several desirable characteristics in the industrial sector: detergency, antimicrobial effects, skin hydration, and emulsibility. Several yeast glycolipids are currently being utilized in these capacities: sophorolipids, ustilagic acid, and mannosylerythritol lipids (MELs). An emerging class of glycolipids, termed polyol esters of fatty acids (PEFA), have recently been reported for Rhodotorula babjevae, a basidiomycetous yeast species that secretes hyperacetylated congeners of PEFA (typically with 3–6 acetylation modifications). While screening Rhodotorula species for surfactant production, we identified a new environmental isolate identified as Rhodotorula taiwanensis MD1149 that dropped the surface tension of the liquid medium, indicating that it produced a potent biosurfactant. Acid depolymerization of the purified biosurfactants, followed by gas chromatography-mass spectrometry (GC-MS) analysis revealed that the biosurfactants were composed of PEFA compounds composed mainly of mannitol and arabitol esters of 3-hydroxy fatty acid, 3-methoxy fatty acid, and fatty acids with a single double bond; chain lengths were mainly C16 and C18. Liquid chromatography-mass spectrometry (LC-MS) confirmed the predicted accurate mass of these compounds. Interestingly, PEFA compounds produced by Rhodotorula taiwanensis MD1149 were more surface active due to their hypoacetylation profile (0–4 acetylation modifications) compared to Rhodotorula babjevae MD1169. These disparate surface active properties, based on acetylation, change the hydrophilic-lipophilic balance (HLB) of these compounds, and their potential utility within industrial applications.},
doi = {10.1371/journal.pone.0190373},
journal = {PLoS ONE},
number = 1,
volume = 13,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1371/journal.pone.0190373

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

EXTRACELLULAR GLYCOLIPIDS OF RHODOTORULA SPECIES: THE ISOLATION AND SYNTHESIS OF 3- D -HYDROXYPALMITIC AND 3- D -HYDROXYSTEARIC ACIDS
journal, April 1964

  • Tulloch, A. P.; Spencer, J. F. T.
  • Canadian Journal of Chemistry, Vol. 42, Issue 4
  • DOI: 10.1139/v64-123

Histone acetylation and deacetylation in yeast
journal, April 2003

  • Kurdistani, Siavash K.; Grunstein, Michael
  • Nature Reviews Molecular Cell Biology, Vol. 4, Issue 4
  • DOI: 10.1038/nrm1075

Discovery of synthesis and secretion of polyol esters of fatty acids by four basidiomycetous yeast species in the order Sporidiobolales
journal, March 2017

  • Garay, Luis A.; Sitepu, Irnayuli R.; Cajka, Tomas
  • Journal of Industrial Microbiology & Biotechnology, Vol. 44, Issue 6
  • DOI: 10.1007/s10295-017-1919-y

LC/MS analysis and lipase modification of the sophorolipids produced by Rhodotorula bogoriensis **
journal, July 2004


Gas chromatography of sugars and other polyhydroxy compounds
journal, April 1963

  • Bentley, Ronald; Sweeley, C. C.; Makita, M.
  • Biochemical and Biophysical Research Communications, Vol. 11, Issue 1
  • DOI: 10.1016/0006-291X(63)90019-6

The yeast genus Starmerella gen. nov. and Starmerella bombicola sp. nov., the teleomorph of Candida bombicola (Spencer, Gorin & Tullock) Meyer & Yarrow
journal, October 1998

  • Rosa, C. A.; Lachance, M. -A.
  • International Journal of Systematic Bacteriology, Vol. 48, Issue 4
  • DOI: 10.1099/00207713-48-4-1413

Advances in utilization of renewable substrates for biosurfactant production
journal, January 2011

  • Makkar, Randhir S.; Cameotra, Swaranjit S.; Banat, Ibrahim M.
  • AMB Express, Vol. 1, Issue 1
  • DOI: 10.1186/2191-0855-1-5

Methods for investigating biosurfactants and bioemulsifiers: a review
journal, March 2010

  • Satpute, Surekha K.; Banpurkar, Arun G.; Dhakephalkar, Prashant K.
  • Critical Reviews in Biotechnology, Vol. 30, Issue 2
  • DOI: 10.3109/07388550903427280

Design of selective production of sophorolipids by Rhodotorula bogoriensis through nutritional requirements : DESIGN OF SELECTIVE PRODUCTION OF SOPHOROLIPIDS BY
journal, October 2012

  • Ribeiro, Isabel A.; Bronze, Maria R.; Castro, Matilde F.
  • Journal of Molecular Recognition, Vol. 25, Issue 11
  • DOI: 10.1002/jmr.2188

Protein Acetylation and Acetyl Coenzyme A Metabolism in Budding Yeast
journal, October 2014

  • Galdieri, Luciano; Zhang, Tiantian; Rogerson, Daniella
  • Eukaryotic Cell, Vol. 13, Issue 12
  • DOI: 10.1128/EC.00189-14

Bioemulsifiers are not biosurfactants and require different screening approaches
journal, April 2015

  • Uzoigwe, Chibuzo; Burgess, J. Grant; Ennis, Christopher J.
  • Frontiers in Microbiology, Vol. 6
  • DOI: 10.3389/fmicb.2015.00245

<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1963-08-20">August 1963</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sweeley, C. C.; Bentley, Ronald; Makita, M.</span> </li> <li> Journal of the American Chemical Society, Vol. 85, Issue 16</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/ja00899a032" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/ja00899a032<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.3389/fmicb.2015.01344" target="_blank" rel="noopener noreferrer" class="name">Editorial: Microbiotechnology Based Surfactants and Their Applications<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-12-01">December 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Rahman, Pattanathu K. S. M.; Randhawa, Kamaljeet K. Sekhon</span> </li> <li> Frontiers in Microbiology, Vol. 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.3389/fmicb.2015.01344" class="text-muted" target="_blank" rel="noopener noreferrer">10.3389/fmicb.2015.01344<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/bit.23248" target="_blank" rel="noopener noreferrer" class="name">One-step production of unacetylated sophorolipids by an acetyltransferase negative Candida bombicola<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2011-07-12">July 2011</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Saerens, Karen M. J.; Saey, Lien; Soetaert, Wim</span> </li> <li> Biotechnology and Bioengineering, Vol. 108, Issue 12</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/bit.23248" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/bit.23248<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.3389/fmicb.2014.00454" target="_blank" rel="noopener noreferrer" class="name">Rhamnolipid biosurfactants—past, present, and future scenario of global market<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-09-02">September 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sekhon Randhawa, Kamaljeet K.; Rahman, Pattanathu K. S. M.</span> </li> <li> Frontiers in Microbiology, Vol. 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.3389/fmicb.2014.00454" class="text-muted" target="_blank" rel="noopener noreferrer">10.3389/fmicb.2014.00454<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.simyco.2015.12.002" target="_blank" rel="noopener noreferrer" class="name">Phylogenetic classification of yeasts and related taxa within Pucciniomycotina<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-06-01">June 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wang, Q. -M.; Yurkov, A. M.; Göker, M.</span> </li> <li> Studies in Mycology, Vol. 81</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.simyco.2015.12.002" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.simyco.2015.12.002<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.3389/fmicb.2014.00697" target="_blank" rel="noopener noreferrer" class="name">Cost effective technologies and renewable substrates for biosurfactants’ production<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-12-12">December 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Banat, Ibrahim M.; Satpute, Surekha K.; Cameotra, Swaranjit S.</span> </li> <li> Frontiers in Microbiology, Vol. 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.3389/fmicb.2014.00697" class="text-muted" target="_blank" rel="noopener noreferrer">10.3389/fmicb.2014.00697<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/acs.jnatprod.6b00497" target="_blank" rel="noopener noreferrer" class="name">Multiplatform Mass Spectrometry-Based Approach Identifies Extracellular Glycolipids of the Yeast <em>Rhodotorula babjevae</em> UCDFST 04-877<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-09-26">September 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Cajka, Tomas; Garay, Luis A.; Sitepu, Irnayuli R.</span> </li> <li> Journal of Natural Products, Vol. 79, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/acs.jnatprod.6b00497" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/acs.jnatprod.6b00497<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1042/bj1251009" target="_blank" rel="noopener noreferrer" class="name">An assessment of methanolysis and other factors used in the analysis of carbohydrate-containing materials<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1971-12-01">December 1971</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Chambers, R. E.; Clamp, J. R.</span> </li> <li> Biochemical Journal, Vol. 125, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1042/bj1251009" class="text-muted" target="_blank" rel="noopener noreferrer">10.1042/bj1251009<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1111/lam.12440" target="_blank" rel="noopener noreferrer" class="name">Biosurfactants in cosmetics and biopharmaceuticals<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-06-25">June 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Varvaresou, A.; Iakovou, K.</span> </li> <li> Letters in Applied Microbiology, Vol. 61, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1111/lam.12440" class="text-muted" target="_blank" rel="noopener noreferrer">10.1111/lam.12440<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1139/v68-057" target="_blank" rel="noopener noreferrer" class="name">A new hydroxy fatty acid sophoroside from <em>Candida</em> <em>bogoriensis</em><span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1968-02-01">February 1968</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Tulloch, A. P.; Spencer, J. F. T.; Deinema, M. H.</span> </li> <li> Canadian Journal of Chemistry, Vol. 46, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1139/v68-057" class="text-muted" target="_blank" rel="noopener noreferrer">10.1139/v68-057<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="fa fa-angle-left"></span></a><ul class="pagination d-inline-block" style="padding-left:.2em;"></ul><a class="pure-button next page" href="#" rel="next"><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (21)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> </form> </div> </div> </div> </section> <section id="biblio-citations" class="tab-content tab-content-sec osti-curated" data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Works referencing / citing this record:</p> <div class="list"> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1186/s12934-019-1200-3" target="_blank" rel="noopener noreferrer" class="name">Efficient simultaneous production of extracellular polyol esters of fatty acids and intracellular lipids from inulin by a deep-sea yeast Rhodotorula paludigena P4R5<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-09-03">September 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wang, Mengqi; Mao, Weian; Wang, Xiaoxiang</span> </li> <li> Microbial Cell Factories, Vol. 18, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1186/s12934-019-1200-3" class="text-muted" target="_blank" rel="noopener noreferrer">10.1186/s12934-019-1200-3<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="fa fa-angle-left"></span></a><ul class="pagination d-inline-block" style="padding-left:.2em;"></ul><a class="pure-button next page" href="#" rel="next"><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All Cited By</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (1)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted citation-search"> <label for="citation-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="citation-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="citation-search-sort-name"><label for="citation-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="citation-search-sort-date"><label for="citation-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1437208-prospects-fungal-bioremediation-acidic-radioactive-waste-sites-characterization-genome-sequence-rhodotorula-taiwanensis-md1149" itemprop="url">Prospects for Fungal Bioremediation of Acidic Radioactive Waste Sites: Characterization and Genome Sequence of Rhodotorula taiwanensis MD1149</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Tkavc, Rok</span> ; <span class="author">Matrosova, Vera Y.</span> ; <span class="author">Grichenko, Olga E.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Frontiers in Microbiology</span> </span> </div> <div class="abstract">Highly concentrated radionuclide waste produced during the Cold War era is stored at US Department of Energy (DOE) production sites. This radioactive waste was often highly acidic and mixed with heavy metals, and has been leaking into the environment since the 1950s. Because of the danger and expense of cleanup of such radioactive sites by physicochemical processes, in situ bioremediation methods are being developed for cleanup of contaminated ground and groundwater. To date, the most developed microbial treatment proposed for high-level radioactive sites employs the radiation-resistant bacterium Deinococcus radiodurans. However, the use of Deinococcus spp. and other bacteria is limited<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> by their sensitivity to low pH. Here, we report the characterization of 27 diverse environmental yeasts for their resistance to ionizing radiation (chronic and acute), heavy metals, pH minima, temperature maxima and optima, and their ability to form biofilms. Remarkably, many yeasts are extremely resistant to ionizing radiation and heavy metals. They also excrete carboxylic acids and are exceptionally tolerant to low pH. A special focus is placed on Rhodotorula taiwanensis MD1149, which was the most resistant to acid and gamma radiation. MD1149 is capable of growing under 66 Gy/h at pH 2.3 and in the presence of high concentrations of mercury and chromium compounds, and forming biofilms under high-level chronic radiation and low pH. We present the whole genome sequence and annotation of R. taiwanensis strain MD1149, with a comparison to other Rhodotorula species. This survey elevates yeasts to the frontier of biology's most radiation-resistant representatives, presenting a strong rationale for a role of fungi in bioremediation of acidic radioactive waste sites.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 4<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.3389/fmicb.2017.02528" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1437208" data-product-type="Journal Article" data-product-subtype="PA" >10.3389/fmicb.2017.02528</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1510820-expression-cocoa-genes-saccharomyces-cerevisiae-improves-cocoa-butter-production" itemprop="url">Expression of cocoa genes in <em>Saccharomyces cerevisiae</em> improves cocoa butter production</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Wei, Yongjun</span> ; <span class="author">Bergenholm, David</span> ; <span class="author">Gossing, Michael</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Microbial Cell Factories</span> </span> </div> <div class="abstract">Cocoa butter (CB) extracted from cocoa beans (<em>Theobroma cacao</em>) is the main raw material for chocolate production, but CB supply is insufficient due to the increased chocolate demand and limited CB production. CB is mainly composed of three different kinds of triacylglycerols (TAGs), 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, C16:0-C18:1-C16:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol (POS, C16:0-C18:1-C18:0) and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-C18:0). In general, <em>Saccharomyces cerevisiae</em> produces TAGs as storage lipids, which consist of C16 and C18 fatty acids. However, cocoa butter-like lipids (CBL, which are composed of POP, POS and SOS) are not among the major TAG forms in yeast. TAG biosynthesis is mainly catalyzed by three enzymes:<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> glycerol-3-phosphate acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT), and it is essential to modulate the yeast TAG biosynthetic pathway for higher CBL production. We cloned seven GPAT genes and three LPAT genes from cocoa cDNA, in order to screen for CBL biosynthetic gene candidates. By expressing these cloned cocoa genes and two synthesized cocoa DGAT genes in <em>S. cerevisiae</em>, we successfully increased total fatty acid production, TAG production and CBL production in some of the strains. In the best producer, the potential CBL content was eightfold higher than the control strain, suggesting the cocoa genes expressed in this strain were functional and might be responsible for CBL biosynthesis. Moreover, the potential CBL content increased 134-fold over the control Y29-TcD1 (IMX581 <em>sct1</em>Δ <em>ale1</em>Δ <em>lro1</em>Δ <em>dga1</em>Δ with <em>TcDGAT1</em> expression) in strain Y29-441 (IMX581 <em>sct1</em>Δ <em>ale1</em>Δ <em>lro1</em>Δ <em>dga1</em>Δ with <em>TcGPAT4</em>, <em>TcLPAT4</em> and <em>TcDGAT1</em> expression) further suggesting cocoa GPAT and LPAT genes functioned in yeast. We demonstrated that cocoa TAG biosynthetic genes functioned in <em>S. cerevisiae</em> and identified cocoa genes that may be involved in CBL production. Moreover, we found that expression of some cocoa CBL biosynthetic genes improved potential CBL production in <em>S. cerevisiae</em>, showing that metabolic engineering of yeast for cocoa butter production can be realized by manipulating the key enzymes GPAT, LPAT and DGAT in the TAG biosynthetic pathway.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 5<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1186/s12934-018-0866-2" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1510820" data-product-type="Journal Article" data-product-subtype="AM" >10.1186/s12934-018-0866-2</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1510820" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1510820" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1503630-chimeric-fatty-acyl-acyl-carrier-protein-thioesterases-provide-mechanistic-insight-enzyme-specificity-expression" itemprop="url">Chimeric Fatty Acyl-Acyl Carrier Protein Thioesterases Provide Mechanistic Insight into Enzyme Specificity and Expression</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Ziesack, Marika</span> ; <span class="author">Rollins, Nathan</span> ; <span class="author">Shah, Aashna</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Applied and Environmental Microbiology</span> </span> </div> <div class="abstract">Medium-chain fatty acids are commodity chemicals. Increasing and modifying the activity of thioesterases (TEs) on medium-chain fatty acyl-acyl carrier protein (acyl-ACP) esters may enable a high-yield microbial production of these molecules. The plant <em>Cuphea palustris</em> harbors two distinct TEs: <em>C. palustris</em> FatB1 (<em>Cp</em>FatB1) (C<sub>8</sub> specificity, lower activity) and <em>Cp</em> FatB2 (C<sub>14</sub> specificity, higher activity) with 78% sequence identity. We combined structural features from these two enzymes to create several chimeric TEs, some of which showed nonnatural fatty acid production as measured by an enzymatic assay and gas chromatography-mass spectrometry (GC-MS). Substantially, chimera 4 exhibited an increased C<sub>8</sub> fatty acid production<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> in correlation with improved microbial expression. This chimera led us to identify <em>Cp</em>FatB2-specific amino acids between positions 219 and 272 that lead to higher protein levels. Chimera 7 produced a broad range of fatty acids and appeared to combine a fatty acid binding pocket with long-chain specificity and an ACP interaction site that may activate fatty acid extrusion. Using homology modeling and <em>in silico</em> docking with ACP, we identified a “positive patch” within amino acids 162 to 218, which may direct the ACP interaction and regulate access to short-chain fatty acids. On the basis of this modeling, we transplanted putative ACP interaction sequences from <em>Cp</em>FatB1 into <em>Cp</em>FatB2 and created a chimeric thioesterase that produced medium-chain as well as long-chain fatty acids. Hence, the engineering of chimeric enzymes and characterizing their microbial activity and chain-length specificity suggested mechanistic insights into TE functions and also generated thioesterases with potentially useful properties. These observations may inform a rational engineering of TEs to allow alkyl chain length control. IMPORTANCE: Medium-chain fatty acids are important commodity chemicals. These molecules are used as plastic precursors and in shampoos and other detergents and could be used as biofuel precursors if production economics were favorable. Hydrocarbon-based liquid fuels must be optimized to have a desired boiling point, low freezing point, low viscosity, and other physical characteristics. Furthermore, the solubility and harshness of detergents and the flexibility of plastic polymers can be modulated. The length and distribution of the carbon chains in the hydrophobic tails determine these properties. The biological synthesis of cell membranes and fatty acids produces chains of primarily 16 to 18 carbons, which give rise to current biofuels. The ultimate goal of the work presented here is to engineer metabolic pathways to produce designer molecules with the correct number of carbons in a chain, so that such molecules could be used directly as specialty commodity chemicals or as fuels after minimal processing.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 1<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1128/aem.02868-17" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1503630" data-product-type="Journal Article" data-product-subtype="AM" >10.1128/aem.02868-17</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1503630" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1503630" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="5" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1608255-mass-spectrometry-based-high-throughput-screening-method-engineering-fatty-acid-synthases-improved-production-medium-chain-fatty-acids" itemprop="url">A mass spectrometry-based high-throughput screening method for engineering fatty acid synthases with improved production of medium-chain fatty acids</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Xue, Pu</span> ; <span class="author">Si, Tong</span> ; <span class="author">Mishra, Shekhar</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Biotechnology and Bioengineering</span> </span> </div> <div class="abstract">Microbial cell factories have been extensively engineered to produce free fatty acids (FFAs), key components of crucial nutrients, soaps, industrial chemicals, and fuels. Yet, our ability to control the specificity of microbially synthesized FFAs is still limited for medium-chain fatty acids (MCFAs), which is mainly due to lack of high-throughput approaches for FFA analysis. Here we report a mass spectrometry (MS)-based method for rapid profiling of MCFAs in Saccharomyces cerevisiae by using membrane lipids as a proxy. Specially, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) MS was used to detect shorter acyl chain phosphatidylcholines from membrane lipids and the m/z peak ratio<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> at 730 and 758 was used as an index for improved MCFA production. This yeast colony-based method can be performed at a rate of ~2 second per sample, which is much faster than the gold standard gas chromatography (GC)-MS (typically > 30 min per sample). To demonstrate the power of this method, we performed site-saturation mutagenesis of the yeast fatty acid synthase and identified 9 mutants that resulted in improved MCFA production relative to the wild-type strain. This colony-based MALDI-ToF MS screening method offers an alternative way for engineering microbial fatty acid compositions in a high-throughput manner.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1002/bit.27343" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1608255" data-product-type="Journal Article" data-product-subtype="AM" >10.1002/bit.27343</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="6" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1422871-recovery-fuel-precursor-lipids-from-oleaginous-yeast" itemprop="url">Recovery of Fuel-Precursor Lipids from Oleaginous Yeast</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Kruger, Jacob S.</span> ; <span class="author">Cleveland, Nicholas S.</span> ; <span class="author">Yeap, Rou Yi</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - ACS Sustainable Chemistry & Engineering</span> </span> </div> <div class="abstract">Bio-derived lipids offer a potentially promising intermediate to displace petroleum-derived diesel. One of the key challenges for the production of lipids via microbial cell mass is that these products are stored intracellularly and must be extracted and recovered efficiently and economically. Thus, improved methods of cell lysis and lipid extraction are needed. In this study, we examine lipid extraction from wet oleaginous yeast in combination with seven different cell lysis approaches encompassing both physical and chemical techniques (high-pressure homogenization, microwave and conventional thermal treatments, bead beating, acid, base, and enzymatic treatments) to facilitate lipid extraction from a model oleaginous yeast<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> strain, Lipomyces starkeyi. Of the seven techniques investigated, acid treatment led to the highest lipid recovery yields. Further exploration of acid treatment and integration with an economic model revealed that treatment at 170 degrees C for 60 min at 1 wt% H<sub>2</sub>SO<sub>4</sub> and 8 wt% yeast solids represents a viable option for both lipid recovery yield and process economics, enabling experimental lipid recovery yields of 88.5-93.0% to be achieved at a corresponding estimated minimum fuel selling price (MFSP) of $5.13-$5.61/gallon of gasoline equivalent (GGE). The same acid treatment conditions applied to two other strains of oleaginous yeast (Cutaneotrichosporon curvatus and Rhodotorula toruloides) resulted in similar lipid recovery yields. In pretreatment experiments scaled up to 300 mL, slightly lower temperatures or shorter pretreatment times, along with higher yeast solids loading, resulted in higher lipid yields than the conditions identified from the small-scale runs. Two replicate runs carried out at 170 degrees C for 30 min using 1 wt% H2SO4 and 19 wt% yeast solids achieved an average lipid recovery of 96.1% at a corresponding estimated MFSP of $4.89/GGE. In all cases, the lipids are primarily triglycerides and free fatty acids comprised mainly of palmitic, stearic, and oleic acids, with smaller fractions of polar lipids. The fatty acid composition of the lipids extracted from the wet treated cell mass is the same as that in freeze-dried whole oleaginous yeast cell mass, suggesting the acid treatment renders all lipids extractable. This work demonstrates that acid treatment is a robust and effective cell lysis technique in a microbial lipid-based biofuel scenario and provides a baseline for further scale-up and process integration.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 6<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1021/acssuschemeng.7b01874" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1422871" data-product-type="Journal Article" data-product-subtype="AM" >10.1021/acssuschemeng.7b01874</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1422871" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1422871" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9; /* padding-top: 0.5rem; */"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator" /> <div class="text-center" style="margin-top:1.25rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="/"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="text-center small" style="margin-top:0.5em;margin-bottom:2.0rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="/disclaim" class="pure-menu-link"><span class="fa fa-institution"></span> Website Policies <span class="hidden-xs">/ Important Links</span></a></li> <li class="pure-menu-item"><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span> Contact Us</a></li> <li class="d-block d-md-none"></li> <li class="pure-menu-item"><a href="https://www.facebook.com/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-facebook" style=""></span></a></li> <li class="pure-menu-item"><a href="https://twitter.com/OSTIgov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-twitter" style=""></span></a></li> <li class="pure-menu-item"><a href="https://www.youtube.com/user/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-youtube-play" style=""></span></a></li> </ul> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.200713.1731.css" rel="stylesheet"> <script src="/pages/js/pages.200713.1731.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.200713.1731.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.200713.1731 --> </html>