DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced Cyclability of Lithium–Oxygen Batteries with Electrodes Protected by Surface Films Induced via In Situ Electrochemical Process

Abstract

Abstract Although the rechargeable lithium–oxygen (Li–O 2 ) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon‐based air‐electrode, Li metal anode, and electrodes, toward reduced oxygen species. Here a simple one‐step in situ electrochemical precharging strategy is demonstrated to generate thin protective films on both carbon nanotubes (CNTs), air‐electrodes and Li metal anodes simultaneously under an inert atmosphere. Li–O 2 cells after such pretreatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity‐limited protocol of 1000 mA h g −1 and 500 mA h g −1 , respectively, which is far more than those without pretreatment. The thin‐films formed from decomposition of electrolyte during in situ electrochemical precharging processes in an inert environment, can protect both CNTs air‐electrode and Li metal anode prior to conventional Li–O 2 discharge/charge cycling, where reactive reduced oxygen species are formed. This work provides a new approach for protection of carbon‐based air‐electrodes and Li metal anodes in practical Li–O 2 batteries, and may also be applied to other battery systems.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [3];  [1];  [3];  [1];  [3]; ORCiD logo [1]
  1. Energy and Environment Directorate Pacific Northwest National Laboratory Richland WA 99354 USA
  2. Physical Sciences Division Fundamental &, Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA 99354 USA
  3. Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99354 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1415313
Grant/Contract Number:  
DEAC02‐05CH11231; DEAC02‐98CH10886; DE‐AC05‐76RLO1830
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 8 Journal Issue: 11; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Liu, Bin, Xu, Wu, Tao, Jinhui, Yan, Pengfei, Zheng, Jianming, Engelhard, Mark H., Lu, Dongping, Wang, Chongmin, and Zhang, Ji‐Guang. Enhanced Cyclability of Lithium–Oxygen Batteries with Electrodes Protected by Surface Films Induced via In Situ Electrochemical Process. Germany: N. p., 2018. Web. doi:10.1002/aenm.201702340.
Liu, Bin, Xu, Wu, Tao, Jinhui, Yan, Pengfei, Zheng, Jianming, Engelhard, Mark H., Lu, Dongping, Wang, Chongmin, & Zhang, Ji‐Guang. Enhanced Cyclability of Lithium–Oxygen Batteries with Electrodes Protected by Surface Films Induced via In Situ Electrochemical Process. Germany. https://doi.org/10.1002/aenm.201702340
Liu, Bin, Xu, Wu, Tao, Jinhui, Yan, Pengfei, Zheng, Jianming, Engelhard, Mark H., Lu, Dongping, Wang, Chongmin, and Zhang, Ji‐Guang. Tue . "Enhanced Cyclability of Lithium–Oxygen Batteries with Electrodes Protected by Surface Films Induced via In Situ Electrochemical Process". Germany. https://doi.org/10.1002/aenm.201702340.
@article{osti_1415313,
title = {Enhanced Cyclability of Lithium–Oxygen Batteries with Electrodes Protected by Surface Films Induced via In Situ Electrochemical Process},
author = {Liu, Bin and Xu, Wu and Tao, Jinhui and Yan, Pengfei and Zheng, Jianming and Engelhard, Mark H. and Lu, Dongping and Wang, Chongmin and Zhang, Ji‐Guang},
abstractNote = {Abstract Although the rechargeable lithium–oxygen (Li–O 2 ) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon‐based air‐electrode, Li metal anode, and electrodes, toward reduced oxygen species. Here a simple one‐step in situ electrochemical precharging strategy is demonstrated to generate thin protective films on both carbon nanotubes (CNTs), air‐electrodes and Li metal anodes simultaneously under an inert atmosphere. Li–O 2 cells after such pretreatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity‐limited protocol of 1000 mA h g −1 and 500 mA h g −1 , respectively, which is far more than those without pretreatment. The thin‐films formed from decomposition of electrolyte during in situ electrochemical precharging processes in an inert environment, can protect both CNTs air‐electrode and Li metal anode prior to conventional Li–O 2 discharge/charge cycling, where reactive reduced oxygen species are formed. This work provides a new approach for protection of carbon‐based air‐electrodes and Li metal anodes in practical Li–O 2 batteries, and may also be applied to other battery systems.},
doi = {10.1002/aenm.201702340},
journal = {Advanced Energy Materials},
number = 11,
volume = 8,
place = {Germany},
year = {Tue Jan 02 00:00:00 EST 2018},
month = {Tue Jan 02 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.201702340

Citation Metrics:
Cited by: 377 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effects of Electrolyte Salts on the Performance of Li–O 2 Batteries
journal, February 2013

  • Nasybulin, Eduard; Xu, Wu; Engelhard, Mark H.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 6
  • DOI: 10.1021/jp311114u

A Molten Salt Lithium–Oxygen Battery
journal, February 2016

  • Giordani, Vincent; Tozier, Dylan; Tan, Hongjin
  • Journal of the American Chemical Society, Vol. 138, Issue 8
  • DOI: 10.1021/jacs.5b11744

A Reversible and Higher-Rate Li-O2 Battery
journal, July 2012


Core-Shell-Structured CNT@RuO 2 Composite as a High-Performance Cathode Catalyst for Rechargeable Li-O 2 Batteries
journal, November 2013

  • Jian, Zelang; Liu, Pan; Li, Fujun
  • Angewandte Chemie International Edition, Vol. 53, Issue 2
  • DOI: 10.1002/anie.201307976

Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure
journal, November 2014

  • Zhang, Yaohui; Qian, Jiangfeng; Xu, Wu
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl5039117

A lithium–oxygen battery based on lithium superoxide
journal, January 2016

  • Lu, Jun; Jung Lee, Yun; Luo, Xiangyi
  • Nature, Vol. 529, Issue 7586, p. 377-382
  • DOI: 10.1038/nature16484

A stable cathode for the aprotic Li–O2 battery
journal, September 2013

  • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
  • Nature Materials, Vol. 12, Issue 11
  • DOI: 10.1038/nmat3737

Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions
journal, April 2016

  • Gao, Xiangwen; Chen, Yuhui; Johnson, Lee
  • Nature Materials, Vol. 15, Issue 8
  • DOI: 10.1038/nmat4629

The Carbon Electrode in Nonaqueous Li–O2 Cells
journal, December 2012

  • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 135, Issue 1, p. 494-500
  • DOI: 10.1021/ja310258x

Superior Performance of a Li-O 2 Battery with Metallic RuO 2 Hollow Spheres as the Carbon-Free Cathode
journal, May 2015

  • Li, Fujun; Tang, Dai-Ming; Zhang, Tao
  • Advanced Energy Materials, Vol. 5, Issue 13
  • DOI: 10.1002/aenm.201500294

Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance
journal, June 2016


Implications of CO 2 Contamination in Rechargeable Nonaqueous Li–O 2 Batteries
journal, December 2012

  • Gowda, S. R.; Brunet, A.; Wallraff, G. M.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 2
  • DOI: 10.1021/jz301902h

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Ordered Hierarchical Mesoporous/Macroporous Carbon: A High-Performance Catalyst for Rechargeable Li-O 2 Batteries
journal, August 2013


Platinum−Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium−Air Batteries
journal, September 2010

  • Lu, Yi-Chun; Xu, Zhichuan; Gasteiger, Hubert A.
  • Journal of the American Chemical Society, Vol. 132, Issue 35, p. 12170-12171
  • DOI: 10.1021/ja1036572

Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O 2 Battery
journal, October 2015

  • Zhu, Jinzhen; Wang, Fan; Wang, Beizhou
  • Journal of the American Chemical Society, Vol. 137, Issue 42
  • DOI: 10.1021/jacs.5b07792

Ruthenium-Based Electrocatalysts Supported on Reduced Graphene Oxide for Lithium-Air Batteries
journal, April 2013

  • Jung, Hun-Gi; Jeong, Yo Sub; Park, Jin-Bum
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn400477d

Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance
journal, July 2013

  • Sun, Bing; Munroe, Paul; Wang, Guoxiu
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02247

Formation of Interfacial Layer and Long-Term Cyclability of Li–O 2 Batteries
journal, August 2014

  • Nasybulin, Eduard N.; Xu, Wu; Mehdi, B. Layla
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 16
  • DOI: 10.1021/am503390q

Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium–sulfur batteries
journal, July 2015


Sustainable Redox Mediation for Lithium-Oxygen Batteries by a Composite Protective Layer on the Lithium-Metal Anode
journal, December 2015

  • Lee, Dong Jin; Lee, Hongkyung; Kim, Yun-Jung
  • Advanced Materials, Vol. 28, Issue 5
  • DOI: 10.1002/adma.201503169

A Thermally Conductive Separator for Stable Li Metal Anodes
journal, August 2015


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Cycling Li-O2 batteries via LiOH formation and decomposition
journal, October 2015


Combining Accurate O 2 and Li 2 O 2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li–O 2 Batteries
journal, August 2013

  • McCloskey, Bryan D.; Valery, Alexia; Luntz, Alan C.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
  • DOI: 10.1021/jz401659f

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries
journal, August 2013

  • Lu, Jun; Lei, Yu; Lau, Kah Chun
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3383

Charging a Li–O2 battery using a redox mediator
journal, May 2013

  • Chen, Yuhui; Freunberger, Stefan A.; Peng, Zhangquan
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1646

The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries
journal, October 2012


A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries
journal, August 2013

  • Kang, ShinYoung; Mo, Yifei; Ong, Shyue Ping
  • Chemistry of Materials, Vol. 25, Issue 16, p. 3328-3336
  • DOI: 10.1021/cm401720n

Enhanced Cycling Stability of Rechargeable Li-O 2 Batteries Using High-Concentration Electrolytes
journal, December 2015


B4C as a stable non-carbon-based oxygen electrode material for lithium-oxygen batteries
journal, March 2017


An improved high-performance lithium–air battery
journal, June 2012

  • Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum
  • Nature Chemistry, Vol. 4, Issue 7
  • DOI: 10.1038/nchem.1376

A Solution-Phase Bifunctional Catalyst for Lithium–Oxygen Batteries
journal, June 2014

  • Sun, Dan; Shen, Yue; Zhang, Wang
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja501877e

The Importance of Nanometric Passivating Films on Cathodes for Li–Air Batteries
journal, November 2014

  • Adams, Brian D.; Black, Robert; Radtke, Claudio
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn505337p

Recent Progress on Stability Enhancement for Cathode in Rechargeable Non-Aqueous Lithium-Oxygen Battery
journal, July 2015

  • Chang, Zhi-wen; Xu, Ji-jing; Liu, Qing-chao
  • Advanced Energy Materials, Vol. 5, Issue 21
  • DOI: 10.1002/aenm.201500633

Hybrid Hairy Nanoparticle Electrolytes Stabilizing Lithium Metal Batteries
journal, March 2016


A highly active nanostructured metallic oxide cathode for aprotic Li–O 2 batteries
journal, January 2015

  • Kundu, Dipan; Black, Robert; Berg, Erik Jämstorp
  • Energy & Environmental Science, Vol. 8, Issue 4
  • DOI: 10.1039/C4EE02587C

Multiporous MnCo 2 O 4 Microspheres as an Efficient Bifunctional Catalyst for Nonaqueous Li–O 2 Batteries
journal, November 2013

  • Ma, Shunchao; Sun, Liqun; Cong, Lina
  • The Journal of Physical Chemistry C, Vol. 117, Issue 49
  • DOI: 10.1021/jp407576q

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries
journal, March 2017


Intrinsic Barrier to Electrochemically Decompose Li 2 CO 3 and LiOH
journal, November 2014

  • Ling, Chen; Zhang, Ruigang; Takechi, Kensuke
  • The Journal of Physical Chemistry C, Vol. 118, Issue 46
  • DOI: 10.1021/jp5093306

Chemical and Morphological Changes of Li–O 2 Battery Electrodes upon Cycling
journal, September 2012

  • Gallant, Betar M.; Mitchell, Robert R.; Kwabi, David G.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 39
  • DOI: 10.1021/jp308093b

Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte
journal, January 2015

  • Zu, Chenxi; Azimi, Nasim; Zhang, Zhengcheng
  • Journal of Materials Chemistry A, Vol. 3, Issue 28
  • DOI: 10.1039/C5TA03195H

A new catalyst-embedded hierarchical air electrode for high-performance Li–O2 batteries
journal, January 2013

  • Lim, Hee-Dae; Song, Hyelynn; Gwon, Hyeokjo
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee41910j

An optimized LiNO3/DMSO electrolyte for high-performance rechargeable Li–O2 batteries
journal, January 2014

  • Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang
  • RSC Advances, Vol. 4, Issue 22
  • DOI: 10.1039/c3ra47372d

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362