skip to main content


Title: Electrolyzers Enhancing Flexibility in Electric Grids

This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed, which enables an optimal operation of the load on the basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. In conclusion, the FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable tomore » any load.« less
 [1] ;  [1] ;  [2] ; ORCiD logo [1] ;  [2] ;  [2] ;  [1] ;  [2]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1996-1073; ENERGA
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Energies (Basel)
Additional Journal Information:
Journal Name: Energies (Basel); Journal Volume: 10; Journal Issue: 11; Journal ID: ISSN 1996-1073
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Hydrogen and Fuel Cell Technologies Program (EE-3F)
Country of Publication:
United States
24 POWER TRANSMISSION AND DISTRIBUTION; smarter load; front end controller; grid services; hydrogen
OSTI Identifier: