skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low Mach-number collisionless electrostatic shocks and associated ion acceleration

Abstract

The existence and properties of low Mach-number (M >~ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. By using this semi-analytical model, we also study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1];  [3];  [4];  [1];  [1]
  1. Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Physics
  2. Univ. of Maryland, College Park, MD (United States). Inst. for Research in Electronics and Applied Physics; Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  3. Univ. of Maryland, College Park, MD (United States). Inst. for Research in Electronics and Applied Physics
  4. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF)
OSTI Identifier:
1414905
Grant/Contract Number:  
AGS-1622306; ERC-2014-CoG 647121; 330-2014-6313; AC02-09CH11466
Resource Type:
Accepted Manuscript
Journal Name:
Plasma Physics and Controlled Fusion
Additional Journal Information:
Journal Volume: 60; Journal Issue: 3; Journal ID: ISSN 0741-3335
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; collisonless shock; ion acceleration; laser plasma

Citation Formats

Pusztai, Istvan, TenBarge, Jason, Csapó, Aletta N., Juno, James, Hakim, Ammar, Yi, Longqing, and Fulop, Tunde. Low Mach-number collisionless electrostatic shocks and associated ion acceleration. United States: N. p., 2017. Web. doi:10.1088/1361-6587/aaa2cc.
Pusztai, Istvan, TenBarge, Jason, Csapó, Aletta N., Juno, James, Hakim, Ammar, Yi, Longqing, & Fulop, Tunde. Low Mach-number collisionless electrostatic shocks and associated ion acceleration. United States. doi:10.1088/1361-6587/aaa2cc.
Pusztai, Istvan, TenBarge, Jason, Csapó, Aletta N., Juno, James, Hakim, Ammar, Yi, Longqing, and Fulop, Tunde. Tue . "Low Mach-number collisionless electrostatic shocks and associated ion acceleration". United States. doi:10.1088/1361-6587/aaa2cc. https://www.osti.gov/servlets/purl/1414905.
@article{osti_1414905,
title = {Low Mach-number collisionless electrostatic shocks and associated ion acceleration},
author = {Pusztai, Istvan and TenBarge, Jason and Csapó, Aletta N. and Juno, James and Hakim, Ammar and Yi, Longqing and Fulop, Tunde},
abstractNote = {The existence and properties of low Mach-number (M >~ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. By using this semi-analytical model, we also study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.},
doi = {10.1088/1361-6587/aaa2cc},
journal = {Plasma Physics and Controlled Fusion},
number = 3,
volume = 60,
place = {United States},
year = {2017},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

FIG. 1 FIG. 1: (a) Electrostatic potential of the shock structure showing a monotonic increase from $\phi =0$ to ${\phi }_{\max }$ in the upstream region, and an oscillatory behavior with $0\lt \phi \leqslant {\phi }_{\max }$ in the downstream region. (b) Phase-space plot of the ion distribution showing the different populationsmore » (incoming, reflected, passing, and co-passing). In the upstream region the shock potential reflects a fraction of the ions, while in the downstream the density of passing ions is oscillatory in x.« less

Save / Share:

Works referenced in this record:

Observations of Paired Electrostatic Shocks in the Polar Magnetosphere
journal, February 1977


Discontinuous Galerkin algorithms for fully kinetic plasmas
journal, January 2018


Collisionless shock generation in high-speed counterstreaming plasma flows by a high-power laser
journal, December 2010

  • Morita, T.; Sakawa, Y.; Kuramitsu, Y.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3524269

Shock creation and particle acceleration driven by plasma expansion into a rarefied medium
journal, August 2010

  • Sarri, G.; Dieckmann, M. E.; Kourakis, I.
  • Physics of Plasmas, Vol. 17, Issue 8
  • DOI: 10.1063/1.3469762

Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation
journal, March 2010

  • Kato, Tsunehiko N.; Takabe, Hideaki
  • Physics of Plasmas, Vol. 17, Issue 3
  • DOI: 10.1063/1.3372138

Weak collisionless shocks in laser-plasmas
journal, March 2015


The microphysics of collisionless shock waves
journal, March 2016


Numerical models of the ion-acoustic collisionless shock
conference, January 2016

  • Dudnikova, G. I.; Efimova, A. A.
  • APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’16, AIP Conference Proceedings
  • DOI: 10.1063/1.4964992

Ion shock acceleration by large amplitude slow ion acoustic double layers in laser-produced plasmas
journal, February 2014


Ion Acoustic Waves in a Multi-Ion Plasma
journal, January 1971


Structure of Evolving Ion-Acoustic Fronts in Collisionless Plasmas
journal, January 1970


Contemporary particle-in-cell approach to laser-plasma modelling
journal, September 2015


Vlasov modelling of laser-driven collisionless shock acceleration of protons
journal, May 2016

  • Svedung Wettervik, B.; DuBois, T. C.; Fülöp, T.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948424

Collisionless shock waves in a plasma in a weak magnetic field
journal, January 1963

  • Moiseev, S. S.; Sagdeev, R. Z.
  • Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research, Vol. 5, Issue 1
  • DOI: 10.1088/0368-3281/5/1/309

Simulation of a collisionless planar electrostatic shock in a proton–electron plasma with a strong initial thermal pressure change
journal, January 2010


An exact electrostatic shock solution for a collisionless plasma
journal, September 1970


Ion acceleration from laser-driven electrostatic shocks
journal, May 2013

  • Fiuza, F.; Stockem, A.; Boella, E.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4801526

Modification of the formation of high-Mach number electrostatic shock-like structures by the ion acoustic instability
journal, October 2013

  • Dieckmann, M. E.; Sarri, G.; Doria, D.
  • Physics of Plasmas, Vol. 20, Issue 10
  • DOI: 10.1063/1.4825339

Laminar shocks in high power laser plasma interactions
journal, February 2014

  • Cairns, R. A.; Bingham, R.; Norreys, P.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4864328

Vlasov simulation of laser-driven shock acceleration and ion turbulence
journal, February 2016


Stationary solitary, snoidal and sinusoidal ion acoustic waves
journal, October 1972


Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas
journal, January 1997

  • Wilks, S. C.; Kruer, W. L.
  • IEEE Journal of Quantum Electronics, Vol. 33, Issue 11
  • DOI: 10.1109/3.641310

Ion-acoustic shocks with self-regulated ion reflection and acceleration
journal, April 2016

  • Malkov, M. A.; Sagdeev, R. Z.; Dudnikova, G. I.
  • Physics of Plasmas, Vol. 23, Issue 4
  • DOI: 10.1063/1.4945649

Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams
journal, November 2011

  • Haberberger, Dan; Tochitsky, Sergei; Fiuza, Frederico
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2130

Electromagnetic Field Generation in the Downstream of Electrostatic Shocks Due to Electron Trapping
journal, September 2014


Observation of Collisionless Electrostatic Shocks
journal, February 1970


Observation of Collisionless Shocks in Laser-Plasma Experiments
journal, July 2008


Formation and Structure of Electrostatic Collisionless Shocks
journal, December 1970


Solitary versus shock wave acceleration in laser-plasma interactions
journal, April 2012

  • Macchi, Andrea; Nindrayog, Amritpal Singh; Pegoraro, Francesco
  • Physical Review E, Vol. 85, Issue 4
  • DOI: 10.1103/PhysRevE.85.046402

Ion acceleration in short-laser-pulse interaction with solid foils
journal, November 2005

  • Tikhonchuk, V. T.; Andreev, A. A.; Bochkarev, S. G.
  • Plasma Physics and Controlled Fusion, Vol. 47, Issue 12B
  • DOI: 10.1088/0741-3335/47/12B/S69

Effect of Target Composition on Proton Energy Spectra in Ultraintense Laser-Solid Interactions
journal, January 2006


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.