DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Barium Bismuth Niobate Double Perovskite/Tungsten Oxide Nanosheet Photoanode for High‐Performance Photoelectrochemical Water Splitting

Abstract

Abstract Recently, a new method to effectively engineer the bandgap of barium bismuth niobate (BBNO) double perovskite was reported. However, the planar electrodes based on BBNO thin films show low photocurrent densities for water oxidation owing to their poor electrical conductivity. Here, it is reported that the photoelectrochemical (PEC) activity of BBNO‐based electrodes can be dramatically enhanced by coating thin BBNO layers on tungsten oxide (WO 3 ) nanosheets to solve the poor conductivity issue while maintaining strong light absorption. The PEC activity of BBNO/WO 3 nanosheet photoanodes can be further enhanced by applying Co 0.8 Mn 0.2 O x nanoparticles as a co‐catalyst. A photocurrent density of 6.02 mA cm −2 at 1.23 V (vs reversible hydrogen electrode (RHE)) is obtained using three optically stacked, but electrically parallel, BBNO/WO 3 nanosheet photoanodes. The BBNO/WO 3 nanosheet photoanodes also exhibit excellent stability in a high‐pH alkaline solution; the photoanodes demonstrate negligible photocurrent density decay while under continuous PEC operation for more than 7 h. This work suggests a viable approach to improve the PEC performance of BBNO absorber‐based devices.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]
  1. Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization The University of Toledo Toledo OH 43606 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1414805
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 8 Journal Issue: 10; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Weng, Baicheng, Grice, Corey R., Ge, Jie, Poudel, Tilak, Deng, Xunming, and Yan, Yanfa. Barium Bismuth Niobate Double Perovskite/Tungsten Oxide Nanosheet Photoanode for High‐Performance Photoelectrochemical Water Splitting. Germany: N. p., 2017. Web. doi:10.1002/aenm.201701655.
Weng, Baicheng, Grice, Corey R., Ge, Jie, Poudel, Tilak, Deng, Xunming, & Yan, Yanfa. Barium Bismuth Niobate Double Perovskite/Tungsten Oxide Nanosheet Photoanode for High‐Performance Photoelectrochemical Water Splitting. Germany. https://doi.org/10.1002/aenm.201701655
Weng, Baicheng, Grice, Corey R., Ge, Jie, Poudel, Tilak, Deng, Xunming, and Yan, Yanfa. Fri . "Barium Bismuth Niobate Double Perovskite/Tungsten Oxide Nanosheet Photoanode for High‐Performance Photoelectrochemical Water Splitting". Germany. https://doi.org/10.1002/aenm.201701655.
@article{osti_1414805,
title = {Barium Bismuth Niobate Double Perovskite/Tungsten Oxide Nanosheet Photoanode for High‐Performance Photoelectrochemical Water Splitting},
author = {Weng, Baicheng and Grice, Corey R. and Ge, Jie and Poudel, Tilak and Deng, Xunming and Yan, Yanfa},
abstractNote = {Abstract Recently, a new method to effectively engineer the bandgap of barium bismuth niobate (BBNO) double perovskite was reported. However, the planar electrodes based on BBNO thin films show low photocurrent densities for water oxidation owing to their poor electrical conductivity. Here, it is reported that the photoelectrochemical (PEC) activity of BBNO‐based electrodes can be dramatically enhanced by coating thin BBNO layers on tungsten oxide (WO 3 ) nanosheets to solve the poor conductivity issue while maintaining strong light absorption. The PEC activity of BBNO/WO 3 nanosheet photoanodes can be further enhanced by applying Co 0.8 Mn 0.2 O x nanoparticles as a co‐catalyst. A photocurrent density of 6.02 mA cm −2 at 1.23 V (vs reversible hydrogen electrode (RHE)) is obtained using three optically stacked, but electrically parallel, BBNO/WO 3 nanosheet photoanodes. The BBNO/WO 3 nanosheet photoanodes also exhibit excellent stability in a high‐pH alkaline solution; the photoanodes demonstrate negligible photocurrent density decay while under continuous PEC operation for more than 7 h. This work suggests a viable approach to improve the PEC performance of BBNO absorber‐based devices.},
doi = {10.1002/aenm.201701655},
journal = {Advanced Energy Materials},
number = 10,
volume = 8,
place = {Germany},
year = {Fri Dec 22 00:00:00 EST 2017},
month = {Fri Dec 22 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.201701655

Citation Metrics:
Cited by: 64 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Photoelectrochemical Characterization of CuInSe 2 and Cu(In 1− x Ga x )Se 2 Thin Films for Solar Cells
journal, December 2010

  • Ye, Heechang; Park, Hyun S.; Akhavan, Vahid A.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 1
  • DOI: 10.1021/jp108170g

Heterogeneous photocatalyst materials for water splitting
journal, January 2009

  • Kudo, Akihiko; Miseki, Yugo
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B800489G

Using hematite for photoelectrochemical water splitting: a review of current progress and challenges
journal, January 2016

  • Tamirat, Andebet Gedamu; Rick, John; Dubale, Amare Aregahegn
  • Nanoscale Horizons, Vol. 1, Issue 4
  • DOI: 10.1039/C5NH00098J

The Future of Energy Supply: Challenges and Opportunities
journal, January 2007

  • Armaroli, Nicola; Balzani, Vincenzo
  • Angewandte Chemie International Edition, Vol. 46, Issue 1-2
  • DOI: 10.1002/anie.200602373

Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO 2
journal, July 2010


Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

Strategies for stable water splitting via protected photoelectrodes
journal, January 2017

  • Bae, Dowon; Seger, Brian; Vesborg, Peter C. K.
  • Chemical Society Reviews, Vol. 46, Issue 7
  • DOI: 10.1039/C6CS00918B

Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%
journal, April 2017


Photooxidation of Water at α-Fe[sub 2]O[sub 3] Electrodes
journal, January 1978

  • Kennedy, John H.
  • Journal of The Electrochemical Society, Vol. 125, Issue 5
  • DOI: 10.1149/1.2131532

Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating
journal, January 2011


Branched Artificial Nanofinger Arrays by Mesoporous Interfacial Atomic Rearrangement
journal, March 2015

  • Kong, Biao; Tang, Jing; Zhang, Yueyu
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/jacs.5b01747

Inorganic Materials as Catalysts for Photochemical Splitting of Water
journal, January 2008


A New Approach for Photocorrosion Inhibition of Ag 2 CO 3 Photocatalyst with Highly Visible-Light-Responsive Reactivity
journal, July 2012

  • Dai, Gaopeng; Yu, Jiaguo; Liu, Gang
  • The Journal of Physical Chemistry C, Vol. 116, Issue 29
  • DOI: 10.1021/jp305669f

Ultrathin films on copper(i) oxide water splitting photocathodes: a study on performance and stability
journal, January 2012

  • Paracchino, Adriana; Mathews, Nripan; Hisatomi, Takashi
  • Energy & Environmental Science, Vol. 5, Issue 9
  • DOI: 10.1039/c2ee22063f

Materials for solar fuels and chemicals
journal, December 2016

  • Montoya, Joseph H.; Seitz, Linsey C.; Chakthranont, Pongkarn
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4778

Photoelectrochemical Conversion of Toluene to Methylcyclohexane as an Organic Hydride by Cu 2 ZnSnS 4 -Based Photoelectrode Assemblies
journal, January 2012

  • Wang, Peng; Minegishi, Tsutomu; Ma, Guijun
  • Journal of the American Chemical Society, Vol. 134, Issue 5
  • DOI: 10.1021/ja209869k

Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes
journal, January 2010

  • Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.
  • Science, Vol. 327, Issue 5962, p. 185-187
  • DOI: 10.1126/science.1180783

Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
journal, June 2011

  • Chen, Yi Wei; Prange, Jonathan D.; Dühnen, Simon
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3047

Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode
journal, March 2017


2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs
journal, January 2014

  • Seger, Brian; Castelli, Ivano E.; Vesborg, Peter C. K.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE01335B

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

WO 3 −Fe 2 O 3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach
journal, July 2009

  • Sivula, Kevin; Formal, Florian Le; Grätzel, Michael
  • Chemistry of Materials, Vol. 21, Issue 13
  • DOI: 10.1021/cm900565a

Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach
journal, June 2010

  • Sivula, Kevin; Zboril, Radek; Le Formal, Florian
  • Journal of the American Chemical Society, Vol. 132, Issue 21
  • DOI: 10.1021/ja101564f

Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability
journal, August 2016

  • Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep31147

Bandgap Engineering of Barium Bismuth Niobate Double Perovskite for Photoelectrochemical Water Oxidation
journal, December 2016

  • Weng, Baicheng; Xiao, Zewen; Meng, Weiwei
  • Advanced Energy Materials, Vol. 7, Issue 9
  • DOI: 10.1002/aenm.201602260

Efficient solar-driven water splitting by nanocone BiVO 4 -perovskite tandem cells
journal, June 2016


Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide
journal, January 2016

  • Anaraki, Elham Halvani; Kermanpur, Ahmad; Steier, Ludmilla
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02390H

Effect of Electrolytes on the Selectivity and Stability of n-type WO 3 Photoelectrodes for Use in Solar Water Oxidation
journal, March 2012

  • Hill, James C.; Choi, Kyoung-Shin
  • The Journal of Physical Chemistry C, Vol. 116, Issue 14
  • DOI: 10.1021/jp209909b

Highly Efficient Capillary Photoelectrochemical Water Splitting Using Cellulose Nanofiber-Templated TiO 2 Photoanodes
journal, February 2014


Silicon Nanowire Array Photoelectrochemical Cells
journal, September 2007

  • Goodey, Adrian P.; Eichfeld, Sarah M.; Lew, Kok-Keong
  • Journal of the American Chemical Society, Vol. 129, Issue 41, p. 12344-12345
  • DOI: 10.1021/ja073125d

Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting
journal, October 2015

  • Kim, Tae Woo; Ping, Yuan; Galli, Giulia A.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9769

Semiconductor-based Photocatalytic Hydrogen Generation
journal, November 2010

  • Chen, Xiaobo; Shen, Shaohua; Guo, Liejin
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr1001645

Hematite-Based Water Splitting with Low Turn-On Voltages
journal, October 2013

  • Du, Chun; Yang, Xiaogang; Mayer, Matthew T.
  • Angewandte Chemie International Edition, Vol. 52, Issue 48
  • DOI: 10.1002/anie.201306263

Composite photoanodes for photoelectrochemical solar water splitting
journal, January 2010

  • Sun, Jianwei; Zhong, Diane K.; Gamelin, Daniel R.
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/c0ee00030b

Hydrogen Evolution from Pt/Ru-Coated p-Type WSe 2 Photocathodes
journal, December 2012

  • McKone, James R.; Pieterick, Adam P.; Gray, Harry B.
  • Journal of the American Chemical Society, Vol. 135, Issue 1
  • DOI: 10.1021/ja308581g

A layered Na 1−x Ni y Fe 1−y O 2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting
journal, January 2017

  • Weng, Baicheng; Xu, Fenghua; Wang, Changlei
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE03088B

Photoelectrochemical water splitting in separate oxygen and hydrogen cells
journal, March 2017

  • Landman, Avigail; Dotan, Hen; Shter, Gennady E.
  • Nature Materials, Vol. 16, Issue 6
  • DOI: 10.1038/nmat4876

Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping
journal, December 2007

  • Ahn, Kwang-Soon; Yan, Yanfa; Shet, Sudhakar
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822440

High Density n-Si/n-TiO 2 Core/Shell Nanowire Arrays with Enhanced Photoactivity
journal, January 2009

  • Hwang, Yun Jeong; Boukai, Akram; Yang, Peidong
  • Nano Letters, Vol. 9, Issue 1
  • DOI: 10.1021/nl8032763

Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst
journal, December 2015

  • Gu, Jing; Yan, Yong; Young, James L.
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4511

Enabling unassisted solar water splitting by iron oxide and silicon
journal, June 2015

  • Jang, Ji-Wook; Du, Chun; Ye, Yifan
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8447

Nanostructured WO 3 /BiVO 4 Heterojunction Films for Efficient Photoelectrochemical Water Splitting
journal, May 2011

  • Su, Jinzhan; Guo, Liejin; Bao, Ningzhong
  • Nano Letters, Vol. 11, Issue 5
  • DOI: 10.1021/nl2000743

Photocatalytic Water Splitting: Recent Progress and Future Challenges
journal, September 2010

  • Maeda, Kazuhiko; Domen, Kazunari
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 18, p. 2655-2661
  • DOI: 10.1021/jz1007966

Nano-photocatalytic Materials: Possibilities and Challenges
journal, October 2011


Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures
journal, March 2017

  • Young, James L.; Steiner, Myles A.; Döscher, Henning
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.28

Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays
journal, January 2011

  • Boettcher, Shannon W.; Warren, Emily L.; Putnam, Morgan C.
  • Journal of the American Chemical Society, Vol. 133, Issue 5, p. 1216-1219
  • DOI: 10.1021/ja108801m

WO 3 Nanoflakes for Enhanced Photoelectrochemical Conversion
journal, November 2014

  • Li, Wenjie; Da, Peimei; Zhang, Yueyu
  • ACS Nano, Vol. 8, Issue 11
  • DOI: 10.1021/nn5053684

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Hydrogen-treated WO3 nanoflakes show enhanced photostability
journal, January 2012

  • Wang, Gongming; Ling, Yichuan; Wang, Hanyu
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee03158b

Development of alternative photocatalysts to TiO2: Challenges and opportunities
journal, January 2009

  • Hernández-Alonso, María D.; Fresno, Fernando; Suárez, Silvia
  • Energy & Environmental Science, Vol. 2, Issue 12
  • DOI: 10.1039/b907933e

Alloys of platinum and early transition metals as oxygen reduction electrocatalysts
journal, September 2009

  • Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.
  • Nature Chemistry, Vol. 1, Issue 7, p. 552-556
  • DOI: 10.1038/nchem.367