skip to main content


Title: A spatially resolved pyrometer for measuring the blackbody temperature of a warm dense plasma

A pyrometer has been developed to spatially resolve the blackbody temperature of a radiatively cooling warm dense plasma. The pyrometer is composed of a lens coupled fiber array, Czerny-Turner visible spectrometer, and an intensified gated CCD for the detector. The radiatively cooling warm dense plasma is generated by a ~100-ns-long intense relativistic electron bunch with an energy of 19.1 MeV and a current of 0.2 kA interacting with 100-μm-thick low-Z foils. The continuum spectrum is measured over 250 nm with a low groove density grating. These plasmas emit visible light or blackbody radiation on relatively long time scales (~0.1 to 100 μs). Finally, we presented the diagnostic layout, calibration, and proof-of-principle measurement of a radiatively cooling aluminum plasma, which includes a spatially resolved temperature gradient and the ability to temporally resolve it also.
ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0034-6748; TRN: US1800649
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 87; Journal Issue: 12; Journal ID: ISSN 0034-6748
American Institute of Physics (AIP)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Calibration; Plasma temperature; Plasma diagnostics; Temperature measurement; Diffraction gratings
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1364075