skip to main content

DOE PAGESDOE PAGES

Title: Transport properties of an asymmetric mixture in the dense plasma regime

Here, we study how concentration changes ionic transport properties along isobars-isotherms for a mixture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially ionized but can have a large effective charge. This will lead to very different physical conditions for the H and Ag. Large first principles orbital free molecular dynamics simulations are performed and the resulting transport properties are analyzed. Comparisons are made with transport theory in the kinetic regime and in the coupled regime. The addition of a small amount of heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture. This effect is explained through kinetic theory as a manifestation of a crossover between classical diffusion and Lorentz diffusion.
Authors:
ORCiD logo [1] ;  [1] ; ORCiD logo [1] ;  [2] ;  [2] ;  [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Alternative Energies and Atomic Energy Commission (CEA), Arpajon (France)
Publication Date:
Report Number(s):
LA-UR-16-22754
Journal ID: ISSN 2470-0045; TRN: US1800645
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 93; Journal Issue: 6; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
OSTI Identifier:
1414119
Alternate Identifier(s):
OSTI ID: 1259346