skip to main content

DOE PAGESDOE PAGES

Title: First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility

The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D 2 and DT layer Inertial Confinement Fusion (ICF) implosions that can access low-to-moderate hot spot convergence ratio (1230) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CR’s of 12-17, and the hot spot formation is well understood, demonstrated by good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [2] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [2] ;  [2] ;  [3] ;  [3] ;  [1] more »;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [1] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. General Atomics, San Diego, CA (United States)
Publication Date:
Report Number(s):
LA-UR-16-25993
Journal ID: ISSN 0031-9007; PRLTAO; TRN: US1800629
Grant/Contract Number:
AC52-06NA25396; AC52-07NA27344; NA0001808
Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 117; Journal Issue: 24; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP) (NA-10)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
OSTI Identifier:
1414095
Alternate Identifier(s):
OSTI ID: 1334691

Olson, R. E., Leeper, R. J., Kline, J. L., Zylstra, A. B., Yi, S. A., Biener, J., Braun, T., Kozioziemski, B. J., Sater, J. D., Bradley, P. A., Peterson, R. R., Haines, B. M., Yin, L., Berzak Hopkins, L. F., Meezan, N. B., Walters, C., Biener, M. M., Kong, C., Crippen, J. W., Kyrala, G. A., Shah, R. C., Herrmann, H. W., Wilson, D. C., Hamza, A. V., Nikroo, A., and Batha, S. H.. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility. United States: N. p., Web. doi:10.1103/PhysRevLett.117.245001.
Olson, R. E., Leeper, R. J., Kline, J. L., Zylstra, A. B., Yi, S. A., Biener, J., Braun, T., Kozioziemski, B. J., Sater, J. D., Bradley, P. A., Peterson, R. R., Haines, B. M., Yin, L., Berzak Hopkins, L. F., Meezan, N. B., Walters, C., Biener, M. M., Kong, C., Crippen, J. W., Kyrala, G. A., Shah, R. C., Herrmann, H. W., Wilson, D. C., Hamza, A. V., Nikroo, A., & Batha, S. H.. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility. United States. doi:10.1103/PhysRevLett.117.245001.
Olson, R. E., Leeper, R. J., Kline, J. L., Zylstra, A. B., Yi, S. A., Biener, J., Braun, T., Kozioziemski, B. J., Sater, J. D., Bradley, P. A., Peterson, R. R., Haines, B. M., Yin, L., Berzak Hopkins, L. F., Meezan, N. B., Walters, C., Biener, M. M., Kong, C., Crippen, J. W., Kyrala, G. A., Shah, R. C., Herrmann, H. W., Wilson, D. C., Hamza, A. V., Nikroo, A., and Batha, S. H.. 2016. "First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility". United States. doi:10.1103/PhysRevLett.117.245001. https://www.osti.gov/servlets/purl/1414095.
@article{osti_1414095,
title = {First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility},
author = {Olson, R. E. and Leeper, R. J. and Kline, J. L. and Zylstra, A. B. and Yi, S. A. and Biener, J. and Braun, T. and Kozioziemski, B. J. and Sater, J. D. and Bradley, P. A. and Peterson, R. R. and Haines, B. M. and Yin, L. and Berzak Hopkins, L. F. and Meezan, N. B. and Walters, C. and Biener, M. M. and Kong, C. and Crippen, J. W. and Kyrala, G. A. and Shah, R. C. and Herrmann, H. W. and Wilson, D. C. and Hamza, A. V. and Nikroo, A. and Batha, S. H.},
abstractNote = {The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D2 and DT layer Inertial Confinement Fusion (ICF) implosions that can access low-to-moderate hot spot convergence ratio (1230) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CR’s of 12-17, and the hot spot formation is well understood, demonstrated by good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.},
doi = {10.1103/PhysRevLett.117.245001},
journal = {Physical Review Letters},
number = 24,
volume = 117,
place = {United States},
year = {2016},
month = {12}
}