skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inverse-collimated proton radiography for imaging thin materials

Abstract

Relativistic, magnetically-focused proton radiography was invented at Los Alamos National Laboratory using the 800 MeV LANSCE beam, and is inherently well-suited to imaging dense objects, at areal densities >20 g cm-2. However, if the unscattered portion of the transmitted beam is removed at the Fourier plane through inverse-collimation, this system becomes highly sensitive to very thin media, of areal densities <100 mg cm-2. Here, this inversecollimation scheme is described in detail and demonstrated by imaging Xe gas with a shockwave generated by an aluminum plate compressing the gas at Mach 8.8. With a 5-mrad inverse collimator, an areal density change of just 49 mg cm-2 across the shock front is discernible with a contrast-to-noise ratio of 3. Geant4 modeling of idealized and realistic proton transports can guide the design of inverse-collimators optimized for specific experimental conditions and show that this technique performs better for thin targets with reduced incident proton beam emittance. This work increases the range of areal densities to which the system is sensitive to span from ~25 mg cm-2 to 100 g cm-2, exceeding three orders of magnitude. This enables the simultaneous imaging of a dense system, as well as thin jets and ejecta material that aremore » otherwise difficult to characterize with high-energy proton radiography.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1] more »;  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1414092
Report Number(s):
LA-UR-16-23988
Journal ID: ISSN 0034-6748; TRN: US1800627
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 88; Journal Issue: 1; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Freeman, Matthew S., Allison, Jason, Andrews, Malcolm, Ferm, Eric, Goett, John J., Kwiatkowski, Kris, Lopez, Julian, Mariam, Fesseha, Marr-Lyon, Mark, Martinez, Michael, Medina, Jason, Medina, Patrick, Merrill, Frank E., Morris, Chris L., Murray, Matthew M., Nedrow, Paul, Neukirch, Levi P., Prestridge, Katherine, Rigg, Paolo, Saunders, Alexander, Schurman, Tamsen, Tainter, Amy, Trouw, Frans, Tupa, Dale, Tybo, Josh, Vogan-McNeil, Wendy, and Wilde, Carl. Inverse-collimated proton radiography for imaging thin materials. United States: N. p., 2017. Web. doi:10.1063/1.4973767.
Freeman, Matthew S., Allison, Jason, Andrews, Malcolm, Ferm, Eric, Goett, John J., Kwiatkowski, Kris, Lopez, Julian, Mariam, Fesseha, Marr-Lyon, Mark, Martinez, Michael, Medina, Jason, Medina, Patrick, Merrill, Frank E., Morris, Chris L., Murray, Matthew M., Nedrow, Paul, Neukirch, Levi P., Prestridge, Katherine, Rigg, Paolo, Saunders, Alexander, Schurman, Tamsen, Tainter, Amy, Trouw, Frans, Tupa, Dale, Tybo, Josh, Vogan-McNeil, Wendy, & Wilde, Carl. Inverse-collimated proton radiography for imaging thin materials. United States. doi:10.1063/1.4973767.
Freeman, Matthew S., Allison, Jason, Andrews, Malcolm, Ferm, Eric, Goett, John J., Kwiatkowski, Kris, Lopez, Julian, Mariam, Fesseha, Marr-Lyon, Mark, Martinez, Michael, Medina, Jason, Medina, Patrick, Merrill, Frank E., Morris, Chris L., Murray, Matthew M., Nedrow, Paul, Neukirch, Levi P., Prestridge, Katherine, Rigg, Paolo, Saunders, Alexander, Schurman, Tamsen, Tainter, Amy, Trouw, Frans, Tupa, Dale, Tybo, Josh, Vogan-McNeil, Wendy, and Wilde, Carl. Sun . "Inverse-collimated proton radiography for imaging thin materials". United States. doi:10.1063/1.4973767. https://www.osti.gov/servlets/purl/1414092.
@article{osti_1414092,
title = {Inverse-collimated proton radiography for imaging thin materials},
author = {Freeman, Matthew S. and Allison, Jason and Andrews, Malcolm and Ferm, Eric and Goett, John J. and Kwiatkowski, Kris and Lopez, Julian and Mariam, Fesseha and Marr-Lyon, Mark and Martinez, Michael and Medina, Jason and Medina, Patrick and Merrill, Frank E. and Morris, Chris L. and Murray, Matthew M. and Nedrow, Paul and Neukirch, Levi P. and Prestridge, Katherine and Rigg, Paolo and Saunders, Alexander and Schurman, Tamsen and Tainter, Amy and Trouw, Frans and Tupa, Dale and Tybo, Josh and Vogan-McNeil, Wendy and Wilde, Carl},
abstractNote = {Relativistic, magnetically-focused proton radiography was invented at Los Alamos National Laboratory using the 800 MeV LANSCE beam, and is inherently well-suited to imaging dense objects, at areal densities >20 g cm-2. However, if the unscattered portion of the transmitted beam is removed at the Fourier plane through inverse-collimation, this system becomes highly sensitive to very thin media, of areal densities <100 mg cm-2. Here, this inversecollimation scheme is described in detail and demonstrated by imaging Xe gas with a shockwave generated by an aluminum plate compressing the gas at Mach 8.8. With a 5-mrad inverse collimator, an areal density change of just 49 mg cm-2 across the shock front is discernible with a contrast-to-noise ratio of 3. Geant4 modeling of idealized and realistic proton transports can guide the design of inverse-collimators optimized for specific experimental conditions and show that this technique performs better for thin targets with reduced incident proton beam emittance. This work increases the range of areal densities to which the system is sensitive to span from ~25 mg cm-2 to 100 g cm-2, exceeding three orders of magnitude. This enables the simultaneous imaging of a dense system, as well as thin jets and ejecta material that are otherwise difficult to characterize with high-energy proton radiography.},
doi = {10.1063/1.4973767},
journal = {Review of Scientific Instruments},
number = 1,
volume = 88,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

An 800-MeV proton radiography facility for dynamic experiments
journal, November 1999

  • King, N. S. P.; Ables, E.; Adams, Ken
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 424, Issue 1
  • DOI: 10.1016/S0168-9002(98)01241-8

200 MeV Proton Radiography Studies With a Hand Phantom Using a Prototype Proton CT Scanner
journal, April 2014

  • Plautz, Tia; Bashkirov, V.; Feng, V.
  • IEEE Transactions on Medical Imaging, Vol. 33, Issue 4
  • DOI: 10.1109/TMI.2013.2297278

Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum
journal, June 2012

  • Buttler, W. T.; Oró, D. M.; Preston, D. L.
  • Journal of Fluid Mechanics, Vol. 703
  • DOI: 10.1017/jfm.2012.190

Review of Particle Physics
journal, August 2014


Modeling and analysis of high-explosive driven perturbed plate experiments at Los Alamos
journal, May 2014


Incident shock Mach number effects on Richtmyer-Meshkov mixing in a heavy gas layer
journal, November 2013

  • Orlicz, G. C.; Balasubramanian, S.; Prestridge, K. P.
  • Physics of Fluids, Vol. 25, Issue 11
  • DOI: 10.1063/1.4827435

Proton radiography applications with MCNP5
journal, December 2005

  • Zumbro, J. D.; Acuff, A.; Bull, J. S.
  • Radiation Protection Dosimetry, Vol. 117, Issue 4
  • DOI: 10.1093/rpd/nci034

Development of a multiframe optical imaging detector for proton radiography at LANL
conference, July 2003

  • Kwiatkowski, Kris; King, Nicholas S. P.; Lyke, James C.
  • 25th international Congress on High-Speed photography and Photonics, SPIE Proceedings
  • DOI: 10.1117/12.516916

Fine phantom image from laser-induced proton radiography with a spatial resolution of several μm
journal, July 2014

  • Son, Jaebum; Lee, Cheol Ho; Kang, Jeongsoo
  • Journal of the Korean Physical Society, Vol. 65, Issue 1
  • DOI: 10.3938/jkps.65.6

COSY INFINITY Version 9
journal, March 2006

  • Makino, Kyoko; Berz, Martin
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 558, Issue 1
  • DOI: 10.1016/j.nima.2005.11.109

Proton Radiography Peers into Metal Solidification
journal, June 2013

  • Clarke, Amy; Imhoff, Seth; Gibbs, Paul
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02020

New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)
journal, December 2015


Electron radiography
journal, August 2007

  • Merrill, Frank; Harmon, Frank; Hunt, Alan
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 261, Issue 1-2
  • DOI: 10.1016/j.nimb.2007.04.127

Approximations to multiple Coulomb scattering
journal, May 1991

  • Lynch, Gerald R.; Dahl, Orin I.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 58, Issue 1
  • DOI: 10.1016/0168-583X(91)95671-Y

Explosively driven two-shockwave tools with applications
journal, May 2014


Magnifying lens for 800 MeV proton radiography
journal, October 2011

  • Merrill, F. E.; Campos, E.; Espinoza, C.
  • Review of Scientific Instruments, Vol. 82, Issue 10
  • DOI: 10.1063/1.3652974

Proton Radiography Examination of Unburned Regions in PBX 9502 Corner Turning Experiments
conference, January 2002

  • Ferm, Eric N.
  • Shock Compression of Condensed Matter - 2001: 12th APS Topical Conference, AIP Conference Proceedings
  • DOI: 10.1063/1.1483699

Geant4—a simulation toolkit
journal, July 2003

  • Agostinelli, S.; Allison, J.; Amako, K.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 506, Issue 3
  • DOI: 10.1016/S0168-9002(03)01368-8

The evolution of solid density within a thermal explosion. I. Proton radiography of pre-ignition expansion, material motion, and chemical decomposition
journal, May 2012

  • Smilowitz, L.; Henson, B. F.; Romero, J. J.
  • Journal of Applied Physics, Vol. 111, Issue 10, Article No. 103515
  • DOI: 10.1063/1.4711071

The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning
journal, May 2012

  • Smilowitz, L.; Henson, B. F.; Romero, J. J.
  • Journal of Applied Physics, Vol. 111, Issue 10, Article No. 103516
  • DOI: 10.1063/1.4711072

Direct Observation of the Phenomenology of a Solid Thermal Explosion Using Time-Resolved Proton Radiography
journal, June 2008


Proton radiography and accurate density measurements: A window into shock wave processes
journal, June 2008


MCNP5 for proton radiography
journal, December 2005

  • Hughes, H. Grady; Brown, Forrest B.; Bull, Jeffrey S.
  • Radiation Protection Dosimetry, Vol. 116, Issue 1-4
  • DOI: 10.1093/rpd/nci109

Development of multiframe detectors for ultrafast radiography with 800 MeV protons
journal, February 2002

  • Kwiatkowski, K.; Beche, J. -F.; Burks, M. T.
  • IEEE Transactions on Nuclear Science, Vol. 49, Issue 1
  • DOI: 10.1109/TNS.2002.998656

High-energy proton imaging for biomedical applications
journal, June 2016

  • Prall, M.; Durante, M.; Berger, T.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep27651