skip to main content


This content will become publicly available on November 24, 2018

Title: Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading

Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalytic fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysismore » and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. In conclusion, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.« less
ORCiD logo [1] ;  [1] ;  [2] ;  [2] ;  [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1] ;  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. Johnson Matthey Technology Centre, Billingham (United Kingdom)
Publication Date:
Report Number(s):
Journal ID: ISSN 1463-9262; TRN: US1800467
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Green Chemistry
Additional Journal Information:
Journal Volume: 20; Journal Issue: 3; Journal ID: ISSN 1463-9262
Royal Society of Chemistry
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)
Country of Publication:
United States
09 BIOMASS FUELS; catalytic fast pyrolysis; vapor phase upgrading; liquid phase upgrading
OSTI Identifier: