DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells

Abstract

Abstract Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb 0.5 Sn 0.5 (I 0.8 Br 0.2 ) 3 ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced V oc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2]
  1. Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
  2. Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA, Department of Chemistry City University of Hong Kong Kowloon Hong Kong, Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1413784
Grant/Contract Number:  
DE‐EE 0006710
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 29 Journal Issue: 47; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Yang, Zhibin, Rajagopal, Adharsh, and Jen, Alex K. ‐Y. Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells. Germany: N. p., 2017. Web. doi:10.1002/adma.201704418.
Yang, Zhibin, Rajagopal, Adharsh, & Jen, Alex K. ‐Y. Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells. Germany. https://doi.org/10.1002/adma.201704418
Yang, Zhibin, Rajagopal, Adharsh, and Jen, Alex K. ‐Y. Tue . "Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells". Germany. https://doi.org/10.1002/adma.201704418.
@article{osti_1413784,
title = {Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells},
author = {Yang, Zhibin and Rajagopal, Adharsh and Jen, Alex K. ‐Y.},
abstractNote = {Abstract Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb 0.5 Sn 0.5 (I 0.8 Br 0.2 ) 3 ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced V oc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement.},
doi = {10.1002/adma.201704418},
journal = {Advanced Materials},
number = 47,
volume = 29,
place = {Germany},
year = {Tue Nov 14 00:00:00 EST 2017},
month = {Tue Nov 14 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.201704418

Citation Metrics:
Cited by: 112 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage
journal, July 2017

  • Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok
  • Advanced Materials, Vol. 29, Issue 34
  • DOI: 10.1002/adma.201702140

Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF 2 –Pyrazine Complex
journal, March 2016

  • Lee, Seon Joo; Shin, Seong Sik; Kim, Young Chan
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b00142

Intriguing Optoelectronic Properties of Metal Halide Perovskites
journal, June 2016


Optical response of mixed methylammonium lead iodide and formamidinium tin iodide perovskite thin films
journal, July 2017

  • Ghimire, Kiran; Zhao, Dewei; Yan, Yanfa
  • AIP Advances, Vol. 7, Issue 7
  • DOI: 10.1063/1.4994211

Addressing Toxicity of Lead: Progress and Applications of Low-Toxic Metal Halide Perovskites and Their Derivatives
journal, March 2017

  • Lyu, Miaoqiang; Yun, Jung-Ho; Chen, Peng
  • Advanced Energy Materials, Vol. 7, Issue 15
  • DOI: 10.1002/aenm.201602512

Understanding the physical properties of hybrid perovskites for photovoltaic applications
journal, July 2017


Stable Low-Bandgap Pb-Sn Binary Perovskites for Tandem Solar Cells
journal, August 2016

  • Yang, Zhibin; Rajagopal, Adharsh; Chueh, Chu-Chen
  • Advanced Materials, Vol. 28, Issue 40
  • DOI: 10.1002/adma.201602696

Lead-Free Organic-Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives
journal, February 2017


CH 3 NH 3 Sn x Pb (1– x ) I 3 Perovskite Solar Cells Covering up to 1060 nm
journal, March 2014

  • Ogomi, Yuhei; Morita, Atsushi; Tsukamoto, Syota
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 6
  • DOI: 10.1021/jz5002117

Metal halide perovskites for energy applications
journal, May 2016


Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Ideal-Bandgap Perovskite Solar Cells
journal, July 2017

  • Zong, Yingxia; Wang, Ning; Zhang, Lin
  • Angewandte Chemie International Edition, Vol. 56, Issue 41
  • DOI: 10.1002/anie.201705965

Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells
journal, March 2017


The rapid evolution of highly efficient perovskite solar cells
journal, January 2017

  • Correa-Baena, Juan-Pablo; Abate, Antonio; Saliba, Michael
  • Energy & Environmental Science, Vol. 10, Issue 3
  • DOI: 10.1039/C6EE03397K

High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
journal, May 2015


Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells
journal, August 2015

  • Hao, Feng; Stoumpos, Constantinos C.; Guo, Peijun
  • Journal of the American Chemical Society, Vol. 137, Issue 35, p. 11445-11452
  • DOI: 10.1021/jacs.5b06658

Some Thermodynamics of Photochemical Systems
journal, June 1967

  • Ross, Robert T.
  • The Journal of Chemical Physics, Vol. 46, Issue 12
  • DOI: 10.1063/1.1840606

Tuning CH 3 NH 3 Pb(I 1−x Br x ) 3 perovskite oxygen stability in thin films and solar cells
journal, January 2017

  • Pont, Sebastian; Bryant, Daniel; Lin, Chieh-Ting
  • Journal of Materials Chemistry A, Vol. 5, Issue 20
  • DOI: 10.1039/C7TA00058H

Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution
journal, January 2016

  • Liu, Xiao; Yang, Zhibin; Chueh, Chu-Chen
  • Journal of Materials Chemistry A, Vol. 4, Issue 46
  • DOI: 10.1039/C6TA07712A

Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide
journal, September 2016

  • Liao, Weiqiang; Zhao, Dewei; Yu, Yue
  • Journal of the American Chemical Society, Vol. 138, Issue 38
  • DOI: 10.1021/jacs.6b08337

High Open-Circuit Voltages in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction Photovoltaics
journal, November 2016

  • Zhao, Baodan; Abdi-Jalebi, Mojtaba; Tabachnyk, Maxim
  • Advanced Materials, Vol. 29, Issue 2
  • DOI: 10.1002/adma.201604744

Roadmap and roadblocks for the band gap tunability of metal halide perovskites
journal, January 2017

  • Unger, E. L.; Kegelmann, L.; Suchan, K.
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00404D

Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells
journal, December 2016

  • Forgács, Dávid; Gil-Escrig, Lidón; Pérez-Del-Rey, Daniel
  • Advanced Energy Materials, Vol. 7, Issue 8
  • DOI: 10.1002/aenm.201602121

Efficient and stable solution-processed planar perovskite solar cells via contact passivation
journal, February 2017


Organic Cation-Dependent Degradation Mechanism of Organotin Halide Perovskites
journal, March 2016

  • Wang, Feng; Ma, Jiale; Xie, Fangyan
  • Advanced Functional Materials, Vol. 26, Issue 20
  • DOI: 10.1002/adfm.201505127

Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
journal, September 2016


Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

50% Sn-Based Planar Perovskite Solar Cell with Power Conversion Efficiency up to 13.6%
journal, August 2016

  • Li, Yunlong; Sun, Weihai; Yan, Weibo
  • Advanced Energy Materials, Vol. 6, Issue 24
  • DOI: 10.1002/aenm.201601353

Binary-Metal Perovskites Toward High-Performance Planar-Heterojunction Hybrid Solar Cells
journal, August 2014

  • Zuo, Fan; Williams, Spencer T.; Liang, Po-Wei
  • Advanced Materials, Vol. 26, Issue 37
  • DOI: 10.1002/adma.201401641

A critical review on tin halide perovskite solar cells
journal, January 2017

  • Konstantakou, Maria; Stergiopoulos, Thomas
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00929A

Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI 3 to MAPbI 2 Br Using Composition Spread Libraries
journal, January 2016

  • Braly, Ian L.; Hillhouse, Hugh W.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 2
  • DOI: 10.1021/acs.jpcc.5b10728

Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution
journal, November 2016


Perovskite photonic sources
journal, April 2016


Compositional engineering of perovskite materials for high-performance solar cells
journal, January 2015

  • Jeon, Nam Joong; Noh, Jun Hong; Yang, Woon Seok
  • Nature, Vol. 517, Issue 7535
  • DOI: 10.1038/nature14133

Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening
journal, August 2016

  • Yang, Mengjin; Zhang, Taiyang; Schulz, Philip
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12305

Perovskite-perovskite tandem photovoltaics with optimized band gaps
journal, October 2016


Efficient Carrier Separation and Intriguing Switching of Bound Charges in Inorganic–Organic Lead Halide Solar Cells
journal, June 2015

  • Kim, Gee Yeong; Oh, Seol Hee; Nguyen, Bich Phuong
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00967

Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals
journal, February 2016

  • Jellicoe, Tom C.; Richter, Johannes M.; Glass, Hugh F. J.
  • Journal of the American Chemical Society, Vol. 138, Issue 9
  • DOI: 10.1021/jacs.5b13470

Antagonism between Spin–Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH 3 NH 3 Sn 1– x Pb x I 3
journal, August 2015

  • Im, Jino; Stoumpos, Constantinos C.; Jin, Hosub
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 17
  • DOI: 10.1021/acs.jpclett.5b01738

Halide perovskite materials for solar cells: a theoretical review
journal, January 2015

  • Yin, Wan-Jian; Yang, Ji-Hui; Kang, Joongoo
  • Journal of Materials Chemistry A, Vol. 3, Issue 17
  • DOI: 10.1039/C4TA05033A

Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells
journal, May 2014

  • Hao, Feng; Stoumpos, Constantinos C.; Chang, Robert P. H.
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja5033259

Lead-free organic–inorganic tin halide perovskites for photovoltaic applications
journal, January 2014

  • Noel, Nakita K.; Stranks, Samuel D.; Abate, Antonio
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01076K