skip to main content

DOE PAGESDOE PAGES

Title: Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain

Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. The ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.
Authors:
; ; ; ; ORCiD logo
Publication Date:
Grant/Contract Number:
AC0298CH10886
Type:
Published Article
Journal Name:
IUCrJ
Additional Journal Information:
Journal Name: IUCrJ Journal Volume: 5 Journal Issue: 1; Journal ID: ISSN 2052-2525
Publisher:
International Union of Crystallography (IUCr)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United Kingdom
Language:
English
OSTI Identifier:
1413545