Hydrogenation of CO to Methanol on Ni(110) through Subsurface Hydrogen
- Northwestern Univ., Evanston, IL (United States)
- Princeton Univ., NJ (United States)
We present a combined theoretical and experimental study of CO hydrogenation on a Ni(110) surface, including studies of the role of gas-phase atomic hydrogen, surface hydrogen, and subsurface hydrogen reacting with adsorbed CO. Reaction mechanisms leading both to methane and methanol are considered. In the reaction involving surface or subsurface hydrogen, we investigate four possible pathways, using density functional theory to characterize the relative energetics of each intermediate, including the importance of further hydrogenation versus C-O bond breaking, where the latter may lead to methane production. The most energetically favorable outcome is the production of methanol along a pathway involving the sequential hydrogenation of CO to a H3CO* intermediate, followed by a final hydrogenation to give methanol. In addition, we find that subsurface hydrogen noticeably alters reaction barriers, both passively and through the energy released by diffusion to the surface. Indeed, the effective reaction barriers are even lower than for CO methanolation on Cu(211) and Cu(111) than for Ni(110). In studies of gas-phase H atoms impinging on a CO-adsorbed Ni(110) surface, Born-Oppenheimer molecular dynamics simulations show that direct impact of H is unlikely to result in hydrogenation of CO. This means that Eley-Rideal or hot-atom mechanisms are not important; thus, thermal reactions involving subsurface hydrogen are the primary reaction mechanisms leading to methanol. Finally, we demonstrate experimentally for the first time the production of methanol and formaldehyde from CO hydrogenation on Ni(110) and confirm the role of subsurface hydrogen in the mechanism of this reaction.
- Research Organization:
- Northwestern Univ., Evanston, IL (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- FG02-03ER15457
- OSTI ID:
- 1413067
- Alternate ID(s):
- OSTI ID: 1529566
- Journal Information:
- Journal of the American Chemical Society, Vol. 139, Issue 48; ISSN 0002-7863
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Absorbed hydrogen enhances the catalytic hydrogenation activity of Rh-based nanocatalysts
|
journal | January 2018 |
Upgrading of levulinic acid into diverse N-containing functional chemicals
|
journal | January 2019 |
Capsule‐Structured Copper–Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol
|
journal | November 2019 |
Study on syngas methanation mechanism over Ni 4 /MCM-41 catalyst based on density functional theory
|
journal | June 2019 |
Capsule‐Structured Copper–Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol
|
journal | October 2019 |
Similar Records
Theoretical investigation of the mechanisms for olefinic hydrogenation on Pt(110) and Pt(111) surfaces
Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K