DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance

Abstract

This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 degrees C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ~50% increase when compared to the highest performing composite with undoped carbon at the same loading.

Authors:
 [1];  [2];  [2]; ORCiD logo [1];  [1];  [3];  [1];  [1]; ORCiD logo [1]
  1. Colorado School of Mines, Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1412828
Report Number(s):
NREL/JA-5900-70170
Journal ID: ISSN 0378-7753; TRN: US1800369
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Power Sources
Additional Journal Information:
Journal Volume: 375; Journal Issue: C; Journal ID: ISSN 0378-7753
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; AEMFC; oxygen reduction reaction; perovskite oxide electrocatalyst; XPS; STEM-EDS; N-functionalized carbon

Citation Formats

Dzara, Michael J., Christ, Jason M., Joghee, Prabhuram, Ngo, Chilan, Cadigan, Christopher A., Bender, Guido, Richards, Ryan M., O'Hayre, Ryan, and Pylypenko, Svitlana. La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance. United States: N. p., 2017. Web. doi:10.1016/j.jpowsour.2017.08.071.
Dzara, Michael J., Christ, Jason M., Joghee, Prabhuram, Ngo, Chilan, Cadigan, Christopher A., Bender, Guido, Richards, Ryan M., O'Hayre, Ryan, & Pylypenko, Svitlana. La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance. United States. https://doi.org/10.1016/j.jpowsour.2017.08.071
Dzara, Michael J., Christ, Jason M., Joghee, Prabhuram, Ngo, Chilan, Cadigan, Christopher A., Bender, Guido, Richards, Ryan M., O'Hayre, Ryan, and Pylypenko, Svitlana. Fri . "La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance". United States. https://doi.org/10.1016/j.jpowsour.2017.08.071. https://www.osti.gov/servlets/purl/1412828.
@article{osti_1412828,
title = {La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance},
author = {Dzara, Michael J. and Christ, Jason M. and Joghee, Prabhuram and Ngo, Chilan and Cadigan, Christopher A. and Bender, Guido and Richards, Ryan M. and O'Hayre, Ryan and Pylypenko, Svitlana},
abstractNote = {This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 degrees C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ~50% increase when compared to the highest performing composite with undoped carbon at the same loading.},
doi = {10.1016/j.jpowsour.2017.08.071},
journal = {Journal of Power Sources},
number = C,
volume = 375,
place = {United States},
year = {Fri Sep 01 00:00:00 EDT 2017},
month = {Fri Sep 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Alkaline fuel cells: a critical view
journal, July 1996


Anion exchange membranes for alkaline fuel cells: A review
journal, July 2011

  • Merle, Géraldine; Wessling, Matthias; Nijmeijer, Kitty
  • Journal of Membrane Science, Vol. 377, Issue 1-2, p. 1-35
  • DOI: 10.1016/j.memsci.2011.04.043

Polymeric materials as anion-exchange membranes for alkaline fuel cells
journal, November 2011


Alkaline polymer electrolyte membranes for fuel cell applications
journal, January 2013

  • Wang, Yan-Jie; Qiao, Jinli; Baker, Ryan
  • Chemical Society Reviews, Vol. 42, Issue 13
  • DOI: 10.1039/c3cs60053j

Anion-Exchange Membranes for Fuel Cells: Synthesis Strategies, Properties and Perspectives
journal, August 2015


Review of gas diffusion cathodes for alkaline fuel cells
journal, February 2009


Oxygen reduction on carbon supported Pt and PtRu catalysts in alkaline solutions
journal, April 2009


Atomic Ensemble and Electronic Effects in Ag-Rich AgPd Nanoalloy Catalysts for Oxygen Reduction in Alkaline Media
journal, May 2012

  • Slanac, Daniel A.; Hardin, William G.; Johnston, Keith P.
  • Journal of the American Chemical Society, Vol. 134, Issue 23
  • DOI: 10.1021/ja303580b

3D Nitrogen-Doped Graphene Aerogel-Supported Fe 3 O 4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction
journal, May 2012

  • Wu, Zhong-Shuai; Yang, Shubin; Sun, Yi
  • Journal of the American Chemical Society, Vol. 134, Issue 22
  • DOI: 10.1021/ja3030565

Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction
journal, August 2011

  • Liang, Yongye; Li, Yanguang; Wang, Hailiang
  • Nature Materials, Vol. 10, Issue 10, p. 780-786
  • DOI: 10.1038/nmat3087

MnO 2 -Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media
journal, February 2010

  • Cheng, Fangyi; Su, Yi; Liang, Jing
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901698s

Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials
journal, October 2016

  • Brouzgou, Angeliki; Song, Shuqin; Liang, Zhen-Xing
  • Catalysts, Vol. 6, Issue 10
  • DOI: 10.3390/catal6100159

Advances in designing perovskite catalysts
journal, October 2001


A2B′B″O6 perovskites: A review
journal, May 2015


Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal–Air Battery Electrodes
journal, March 2013

  • Hardin, William G.; Slanac, Daniel A.; Wang, Xiqing
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1021/jz400595z

Analysis of the electronic configuration of the pulsed laser deposited La0.7Ca0.3MnO3 thin films
journal, December 2007


Composite Electrode Boosts the Activity of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ Perovskite and Carbon toward Oxygen Reduction in Alkaline Media
journal, March 2014

  • Fabbri, Emiliana; Mohamed, Rhiyaad; Levecque, Pieter
  • ACS Catalysis, Vol. 4, Issue 4
  • DOI: 10.1021/cs400903k

La 0.8 Sr 0.2 MnO 3−δ Decorated with Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ : A Bifunctional Surface for Oxygen Electrocatalysis with Enhanced Stability and Activity
journal, February 2014

  • Risch, Marcel; Stoerzinger, Kelsey A.; Maruyama, Shingo
  • Journal of the American Chemical Society, Vol. 136, Issue 14
  • DOI: 10.1021/ja5009954

Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale
journal, January 2013

  • Stoerzinger, Kelsey A.; Risch, Marcel; Suntivich, Jin
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee40321a

Oxygen Reduction at Carbon-Supported Lanthanides: The Role of the B-Site
journal, December 2015

  • Celorrio, Verónica; Dann, Ellie; Calvillo, Laura
  • ChemElectroChem, Vol. 3, Issue 2
  • DOI: 10.1002/celc.201500440

Oxygen reduction reaction at La x Ca 1−x MnO 3 nanostructures: interplay between A-site segregation and B-site valency
journal, January 2016

  • Celorrio, Verónica; Calvillo, Laura; Dann, Ellie
  • Catalysis Science & Technology, Vol. 6, Issue 19
  • DOI: 10.1039/C6CY01105E

Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study
journal, February 2012

  • Sunarso, Jaka; Torriero, Angel A. J.; Zhou, Wei
  • The Journal of Physical Chemistry C, Vol. 116, Issue 9
  • DOI: 10.1021/jp211946n

Tellurium-doped lanthanum manganite as catalysts for the oxygen reduction reaction
journal, June 2017

  • Celorrio, V.; Morris, L. J.; Cattelan, M.
  • MRS Communications, Vol. 7, Issue 2
  • DOI: 10.1557/mrc.2017.22

Chemical Structures and Performance of Perovskite Oxides
journal, July 2001

  • Pena, M.; Fierro, J.
  • Chemical Reviews, Vol. 101, Issue 7, p. 1981-2018
  • DOI: 10.1021/cr980129f

Co-doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction
journal, September 2015


Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries
journal, June 2011

  • Suntivich, Jin; Gasteiger, Hubert A.; Yabuuchi, Naoaki
  • Nature Chemistry, Vol. 3, Issue 7, p. 546-550
  • DOI: 10.1038/nchem.1069

Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
journal, January 2015

  • Hong, Wesley T.; Risch, Marcel; Stoerzinger, Kelsey A.
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C4EE03869J

Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions
journal, June 2014

  • Hardin, William G.; Mefford, J. Tyler; Slanac, Daniel A.
  • Chemistry of Materials, Vol. 26, Issue 11
  • DOI: 10.1021/cm403785q

Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides
journal, January 2013

  • Calle-Vallejo, Federico; Inoglu, Nilay G.; Su, Hai-Yan
  • Chemical Science, Vol. 4, Issue 3
  • DOI: 10.1039/c2sc21601a

Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction
journal, July 2012


Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells
journal, January 2013

  • Malkhandi, S.; Trinh, P.; Manohar, Aswin K.
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.109308jes

Anion-Exchange Membrane Fuel Cells: Dual-Site Mechanism of Oxygen Reduction Reaction in Alkaline Media on Cobalt−Polypyrrole Electrocatalysts
journal, March 2010

  • Olson, Tim S.; Pylypenko, Svitlana; Atanassov, Plamen
  • The Journal of Physical Chemistry C, Vol. 114, Issue 11
  • DOI: 10.1021/jp910572g

Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling
journal, January 2014

  • Poux, T.; Bonnefont, A.; Ryabova, A.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 27
  • DOI: 10.1039/C4CP00341A

Electrocatalytic Oxygen Reduction Reaction on Perovskite Oxides: Series versus Direct Pathway
journal, May 2014

  • Poux, Tiphaine; Bonnefont, Antoine; Kéranguéven, Gwénaëlle
  • ChemPhysChem, Vol. 15, Issue 10
  • DOI: 10.1002/cphc.201402022

Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation
journal, October 2007

  • Borup, Rod; Meyers, Jeremy; Pivovar, Bryan
  • Chemical Reviews, Vol. 107, Issue 10
  • DOI: 10.1021/cr050182l

MnO–nitrogen doped graphene as a durable non-precious hybrid catalyst for the oxygen reduction reaction in anion exchange membrane fuel cells
journal, January 2016

  • Arunchander, A.; Vivekanantha, M.; Peera, S. Gouse
  • RSC Advances, Vol. 6, Issue 98
  • DOI: 10.1039/C6RA20627A

Cobalt-Nitrogen Co-doped Carbon Nanotube Cathode Catalyst for Alkaline Membrane Fuel Cells
journal, August 2016

  • Kruusenberg, Ivar; Ramani, Dilip; Ratso, Sander
  • ChemElectroChem, Vol. 3, Issue 9
  • DOI: 10.1002/celc.201600241

Non-platinum cathode catalysts for alkaline membrane fuel cells
journal, March 2012


Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells
journal, February 2011


Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells
journal, September 2011


H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst
journal, September 2010


Nitrogen Doped Graphene as Metal Free Electrocatalyst for Efficient Oxygen Reduction Reaction in Alkaline Media and Its Application in Anion Exchange Membrane Fuel Cells
journal, January 2016

  • Kumar, M. Praveen; Raju, Madhan Mohan; Arunchander, A.
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.0541608jes

Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping
journal, January 2014

  • Palaniselvam, Thangavelu; Valappil, Manila Ozhukil; Illathvalappil, Rajith
  • Energy & Environmental Science, Vol. 7, Issue 3
  • DOI: 10.1039/c3ee43648a

Perovskite-Based Catalysts for Direct Methanol Fuel Cells
journal, July 2007

  • Lan, Aidong; Mukasyan, Alexander S.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 26
  • DOI: 10.1021/jp067343p

Fabrication and performance evaluation of a novel membrane electrode assembly for DMFCs
journal, January 2016

  • Noroozifar, Meissam; Yavari, Zahra; Khorasani-Motlagh, Mozhgan
  • RSC Advances, Vol. 6, Issue 1
  • DOI: 10.1039/C5RA21389D

Methane combustion and CO oxidation on LaAl1−xMnxO3 perovskite-type oxide solid solutions
journal, July 2003


Physicochemical and catalytic properties in methane combustion of La1−xCaxMnO3±y (0≤x≤1; −0.04≤y≤0.24) perovskite-type oxide
journal, March 2005

  • Batis, Narjès Harrouch; Delichere, Pierre; Batis, Habib
  • Applied Catalysis A: General, Vol. 282, Issue 1-2
  • DOI: 10.1016/j.apcata.2004.12.009

Synthesis of high surface area Ca x La (1−x) Al (1−x) Mn x O (3−δ) perovskite oxides for oxygen reduction electrocatalysis in alkaline media
journal, January 2016

  • Christ, Jason M.; Ngo, Chilan; Batson, Tim
  • Catalysis Science & Technology, Vol. 6, Issue 21
  • DOI: 10.1039/C6CY01497F

Impact of Glass Corrosion on the Electrocatalysis on Pt Electrodes in Alkaline Electrolyte
journal, January 2008

  • Mayrhofer, K. J. J.; Wiberg, G. K. H.; Arenz, M.
  • Journal of The Electrochemical Society, Vol. 155, Issue 1
  • DOI: 10.1149/1.2800752

Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode
journal, January 2010

  • Suntivich, Jin; Gasteiger, Hubert A.; Yabuuchi, Naoaki
  • Journal of The Electrochemical Society, Vol. 157, Issue 8
  • DOI: 10.1149/1.3456630

XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures
journal, July 2011

  • Sunding, M. F.; Hadidi, K.; Diplas, S.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 184, Issue 7
  • DOI: 10.1016/j.elspec.2011.04.002

Systematic XPS studies of metal oxides, hydroxides and peroxides
journal, January 2000

  • Dupin, Jean-Charles; Gonbeau, Danielle; Vinatier, Philippe
  • Physical Chemistry Chemical Physics, Vol. 2, Issue 6
  • DOI: 10.1039/a908800h

Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
journal, January 2011

  • Biesinger, Mark C.; Payne, Brad P.; Grosvenor, Andrew P.
  • Applied Surface Science, Vol. 257, Issue 7, p. 2717-2730
  • DOI: 10.1016/j.apsusc.2010.10.051

Nanostructured alumina films by E-beam evaporation
journal, November 2015


XPS study of some calcium compounds
journal, December 1995


LaAlO 3 (100) by XPS
journal, December 1992

  • Vasquez, Richard P.
  • Surface Science Spectra, Vol. 1, Issue 4
  • DOI: 10.1116/1.1247633

XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content
journal, April 2006


Studies of the interfacial structure of LaAlO3 thin films on silicon by x-ray reflectivity and angle-resolved x-ray photoelectron spectroscopy
journal, June 2005

  • Li, X. L.; Xiang, W. F.; Lu, H. B.
  • Journal of Applied Physics, Vol. 97, Issue 12
  • DOI: 10.1063/1.1941470

XPS study of the major minerals in bauxite: Gibbsite, bayerite and (pseudo-)boehmite
journal, April 2006

  • Kloprogge, J. Theo; Duong, Loc V.; Wood, Barry J.
  • Journal of Colloid and Interface Science, Vol. 296, Issue 2
  • DOI: 10.1016/j.jcis.2005.09.054

Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications
journal, January 2014

  • Wood, Kevin N.; O'Hayre, Ryan; Pylypenko, Svitlana
  • Energy Environ. Sci., Vol. 7, Issue 4
  • DOI: 10.1039/C3EE44078H

Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study
journal, August 2011


Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes
journal, September 2011

  • Wiggins-Camacho, Jaclyn D.; Stevenson, Keith J.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 40
  • DOI: 10.1021/jp205336w

Spectroscopic investigation of nitrogen-functionalized carbon materials: Spectroscopic investigation of nitrogen-functionalized carbon
journal, April 2016

  • Wood, Kevin N.; Christensen, Steven T.; Nordlund, Dennis
  • Surface and Interface Analysis, Vol. 48, Issue 5
  • DOI: 10.1002/sia.6017

Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts
journal, January 2013

  • Pylypenko, Svitlana; Borisevich, Albina; More, Karren L.
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40189h

Works referencing / citing this record:

Using lithium chloride as a medium to prepare N,P-codoped carbon nanosheets for oxygen reduction and evolution reactions
journal, January 2019

  • Li, Ping; Jang, Haeseong; Yuan, Bing
  • Inorganic Chemistry Frontiers, Vol. 6, Issue 2
  • DOI: 10.1039/c8qi01240g

Oxygen Reduction Reaction Electrocatalysis in Alkaline Electrolyte on Glassy-Carbon-Supported Nanostructured Pr6O11 Thin-Films
journal, October 2018

  • Sharma, Rakesh; Müller, Verónica; Chatenet, Marian
  • Catalysts, Vol. 8, Issue 10
  • DOI: 10.3390/catal8100461

Nanoscale Perovskites as Catalysts and Supports for Direct Methanol Fuel Cells
journal, April 2019

  • Li, Luyao; Tan, Sha; Salvatore, Kenna L.
  • Chemistry – A European Journal, Vol. 25, Issue 33
  • DOI: 10.1002/chem.201805695