skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes

Abstract

Here, while injectable in situ cross-linking hydrogels have attracted increasing attention as minimally invasive tissue scaffolds and controlled delivery systems, their inherently disorganized and isotropic network structure limits their utility in engineering oriented biological tissues. Traditional methods to prepare anisotropic hydrogels are not easily translatable to injectable systems given the need for external equipment to direct anisotropic gel fabrication and/or the required use of temperatures or solvents incompatible with biological systems. Herein, we report a new class of injectable nanocomposite hydrogels based on hydrazone cross-linked poly(oligoethylene glycol methacrylate) and magnetically aligned cellulose nanocrystals (CNCs) capable of encapsulating skeletal muscle myoblasts and promoting their differentiation into highly oriented myotubes in situ. CNC alignment occurs on the same time scale as network gelation and remains fixed after the removal of the magnetic field, enabling concurrent CNC orientation and hydrogel injection. The aligned hydrogels show mechanical and swelling profiles that can be rationally modulated by the degree of CNC alignment and can direct myotube alignment both in two- and three-dimensions following coinjection of the myoblasts with the gel precursor components. As such, these hydrogels represent a critical advancement in anisotropic biomimetic scaffolds that can be generated noninvasively in vivo following simple injection.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. McMaster Univ., Hamilton, ON (Canada)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1412786
Report Number(s):
BNL-114810-2017-JA
Journal ID: ISSN 1530-6984; KC0403020; TRN: US1800365
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 17; Journal Issue: 10; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; x-ray scattering; hydrogel; Center for Functional Nanomaterials; anisotropic hydrogels; cellulose nanocrystals; injectable hydrogels; magnetic alignment; Muscle tissue engineering; nanocomposite biomaterials

Citation Formats

De France, Kevin J., Yager, Kevin G., Chan, Katelyn J. W., Corbett, Brandon, Cranston, Emily D., and Hoare, Todd. Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes. United States: N. p., 2017. Web. https://doi.org/10.1021/acs.nanolett.7b03600.
De France, Kevin J., Yager, Kevin G., Chan, Katelyn J. W., Corbett, Brandon, Cranston, Emily D., & Hoare, Todd. Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes. United States. https://doi.org/10.1021/acs.nanolett.7b03600
De France, Kevin J., Yager, Kevin G., Chan, Katelyn J. W., Corbett, Brandon, Cranston, Emily D., and Hoare, Todd. Thu . "Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes". United States. https://doi.org/10.1021/acs.nanolett.7b03600. https://www.osti.gov/servlets/purl/1412786.
@article{osti_1412786,
title = {Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes},
author = {De France, Kevin J. and Yager, Kevin G. and Chan, Katelyn J. W. and Corbett, Brandon and Cranston, Emily D. and Hoare, Todd},
abstractNote = {Here, while injectable in situ cross-linking hydrogels have attracted increasing attention as minimally invasive tissue scaffolds and controlled delivery systems, their inherently disorganized and isotropic network structure limits their utility in engineering oriented biological tissues. Traditional methods to prepare anisotropic hydrogels are not easily translatable to injectable systems given the need for external equipment to direct anisotropic gel fabrication and/or the required use of temperatures or solvents incompatible with biological systems. Herein, we report a new class of injectable nanocomposite hydrogels based on hydrazone cross-linked poly(oligoethylene glycol methacrylate) and magnetically aligned cellulose nanocrystals (CNCs) capable of encapsulating skeletal muscle myoblasts and promoting their differentiation into highly oriented myotubes in situ. CNC alignment occurs on the same time scale as network gelation and remains fixed after the removal of the magnetic field, enabling concurrent CNC orientation and hydrogel injection. The aligned hydrogels show mechanical and swelling profiles that can be rationally modulated by the degree of CNC alignment and can direct myotube alignment both in two- and three-dimensions following coinjection of the myoblasts with the gel precursor components. As such, these hydrogels represent a critical advancement in anisotropic biomimetic scaffolds that can be generated noninvasively in vivo following simple injection.},
doi = {10.1021/acs.nanolett.7b03600},
journal = {Nano Letters},
number = 10,
volume = 17,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hydrogels in drug delivery: Progress and challenges
journal, April 2008


Nanocomposite hydrogels for biomedical applications: Nanocomposite Hydrogels
journal, December 2013

  • Gaharwar, Akhilesh K.; Peppas, Nicholas A.; Khademhosseini, Ali
  • Biotechnology and Bioengineering, Vol. 111, Issue 3
  • DOI: 10.1002/bit.25160

Hydrogels for biomedical applications
journal, January 2002


Injectable hydrogels as unique biomedical materials
journal, January 2008

  • Yu, Lin; Ding, Jiandong
  • Chemical Society Reviews, Vol. 37, Issue 8
  • DOI: 10.1039/b713009k

Progress in Tissue Engineering
journal, May 2009


Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles
journal, May 2011

  • Gaharwar, Akhilesh K.; Dammu, Sandhya A.; Canter, Jamie M.
  • Biomacromolecules, Vol. 12, Issue 5
  • DOI: 10.1021/bm200027z

Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction
journal, November 2012


Design and Characterization of an Injectable Tendon Hydrogel: A Novel Scaffold for Guided Tissue Regeneration in the Musculoskeletal System
journal, May 2014

  • Farnebo, Simon; Woon, Colin Y. L.; Schmitt, Taliah
  • Tissue Engineering Part A, Vol. 20, Issue 9-10
  • DOI: 10.1089/ten.tea.2013.0207

Injectable Graphene Oxide/Hydrogel-Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair
journal, July 2014

  • Paul, Arghya; Hasan, Anwarul; Kindi, Hamood Al
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn5020787

Multi-responsive hydrogels for drug delivery and tissue engineering applications
journal, November 2014

  • Knipe, J. M.; Peppas, N. A.
  • Regenerative Biomaterials, Vol. 1, Issue 1
  • DOI: 10.1093/rb/rbu006

In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery
journal, May 2008


Injectable matrices and scaffolds for drug delivery in tissue engineering
journal, May 2007

  • Kretlow, James D.; Klouda, Leda; Mikos, Antonios G.
  • Advanced Drug Delivery Reviews, Vol. 59, Issue 4-5
  • DOI: 10.1016/j.addr.2007.03.013

Drug Carriers for the Delivery of Therapeutic Peptides
journal, March 2014

  • Du, Alice W.; Stenzel, Martina H.
  • Biomacromolecules, Vol. 15, Issue 4
  • DOI: 10.1021/bm500169p

Shear-thinning hydrogels for biomedical applications
journal, January 2012

  • Guvendiren, Murat; Lu, Hoang D.; Burdick, Jason A.
  • Soft Matter, Vol. 8, Issue 2
  • DOI: 10.1039/C1SM06513K

Self-associating networks of poly(methacrylic acid-g-ethylene glycol)
journal, November 1990

  • Klier, J.; Scranton, A. B.; Peppas, N. A.
  • Macromolecules, Vol. 23, Issue 23
  • DOI: 10.1021/ma00225a011

Peptide-directed self-assembly of hydrogels
journal, March 2009


Photopolymerizable hydrogels for tissue engineering applications
journal, November 2002


Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use
journal, March 2010


Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds
journal, June 2005


Regenerative Biomaterials that “Click”: Simple, Aqueous-Based Protocols for Hydrogel Synthesis, Surface Immobilization, and 3D Patterning
journal, November 2011

  • Nimmo, Chelsea M.; Shoichet, Molly S.
  • Bioconjugate Chemistry, Vol. 22, Issue 11
  • DOI: 10.1021/bc200281k

Synthesis of well-defined hydrogel networks using Click chemistry
journal, January 2006

  • Malkoch, Michael; Vestberg, Robert; Gupta, Nalini
  • Chemical Communications, Issue 26
  • DOI: 10.1039/b603438a

Diels−Alder Click Cross-Linked Hyaluronic Acid Hydrogels for Tissue Engineering
journal, March 2011

  • Nimmo, Chelsea M.; Owen, Shawn C.; Shoichet, Molly S.
  • Biomacromolecules, Vol. 12, Issue 3
  • DOI: 10.1021/bm101446k

Disulfide Cross-Linked Hyaluronan Hydrogels
journal, November 2002

  • Shu, Xiao Zheng; Liu, Yanchun; Luo, Yi
  • Biomacromolecules, Vol. 3, Issue 6
  • DOI: 10.1021/bm025603c

Functionalization of Hyaluronic Acid with Chemoselective Groups via a Disulfide-Based Protection Strategy for In Situ Formation of Mechanically Stable Hydrogels
journal, September 2010

  • Ossipov, Dmitri A.; Piskounova, Sonya; Varghese, Oommen P.
  • Biomacromolecules, Vol. 11, Issue 9
  • DOI: 10.1021/bm1007986

In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition
journal, May 2011

  • Fu, Yao; Kao, Weiyuan John
  • Journal of Biomedical Materials Research Part A, Vol. 98A, Issue 2
  • DOI: 10.1002/jbm.a.33106

Delivery of Doxorubicin from Biodegradable PEG Hydrogels Having Schiff Base Linkages†
journal, November 2007

  • Saito, Hiroshi; Hoffman, Allan S.; Ogawa, Hiroaki Iyehara
  • Journal of Bioactive and Compatible Polymers, Vol. 22, Issue 6
  • DOI: 10.1177/0883911507084653

Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions
journal, August 2007


Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials
journal, January 2015

  • Bakaic, Emilia; Smeets, Niels M. B.; Hoare, Todd
  • RSC Advances, Vol. 5, Issue 45
  • DOI: 10.1039/C4RA13581D

Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate)
journal, January 2014

  • Smeets, Niels M. B.; Bakaic, Emilia; Patenaude, Mathew
  • Chemical Communications, Vol. 50, Issue 25
  • DOI: 10.1039/c3cc48514e

Injectable poly(oligoethylene glycol methacrylate)-based hydrogels with tunable phase transition behaviours: Physicochemical and biological responses
journal, October 2014


Probing the Internal Morphology of Injectable Poly(oligoethylene glycol methacrylate) Hydrogels by Light and Small-Angle Neutron Scattering
journal, August 2014

  • Smeets, Niels M. B.; Bakaic, Emilia; Yavitt, Francis M.
  • Macromolecules, Vol. 47, Issue 17
  • DOI: 10.1021/ma5011827

Injectable hydrogels with in situ-forming hydrophobic domains: oligo( d , l -lactide) modified poly(oligoethylene glycol methacrylate) hydrogels
journal, January 2014

  • Smeets, Niels M. B.; Patenaude, Mathew; Kinio, Dennis
  • Polym. Chem., Vol. 5, Issue 23
  • DOI: 10.1039/C4PY00810C

Additive manufacturing of tissues and organs
journal, August 2012


Biomaterials for skeletal muscle tissue engineering
journal, October 2017


Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli
journal, June 2015

  • Neal, Devin; Sakar, Mahmut Selman; Bashir, Rashid
  • Tissue Engineering Part A, Vol. 21, Issue 11-12
  • DOI: 10.1089/ten.tea.2014.0317

Formation of elongated fascicle-inspired 3D tissues consisting of high-density, aligned cells using sacrificial outer molding
journal, January 2014

  • Neal, Devin; Sakar, Mahmut Selman; Ong, Lee-Ling S.
  • Lab Chip, Vol. 14, Issue 11
  • DOI: 10.1039/C4LC00023D

A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
journal, February 2016

  • Kang, Hyun-Wook; Lee, Sang Jin; Ko, In Kap
  • Nature Biotechnology, Vol. 34, Issue 3
  • DOI: 10.1038/nbt.3413

Engineering muscle cell alignment through 3D bioprinting: Engineering muscle cell alignment through 3D bioprinting
journal, June 2017

  • Mozetic, Pamela; Giannitelli, Sara Maria; Gori, Manuele
  • Journal of Biomedical Materials Research Part A, Vol. 105, Issue 9
  • DOI: 10.1002/jbm.a.36117

In situ imaging of layer-by-layer sublimation of suspended graphene
journal, January 2010


Myotube Assembly on Nanofibrous and Micropatterned Polymers
journal, March 2006

  • Huang, Ngan F.; Patel, Shyam; Thakar, Rahul G.
  • Nano Letters, Vol. 6, Issue 3
  • DOI: 10.1021/nl060060o

Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues
journal, September 2009


An Acellular Biologic Scaffold Promotes Skeletal Muscle Formation in Mice and Humans with Volumetric Muscle Loss
journal, April 2014


Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration
journal, August 2016


Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells
journal, April 2016


Biologic-free mechanically induced muscle regeneration
journal, January 2016

  • Cezar, Christine A.; Roche, Ellen T.; Vandenburgh, Herman H.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 6
  • DOI: 10.1073/pnas.1517517113

Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment
journal, January 2008

  • Voge, Christopher M.; Kariolis, Mihalis; MacDonald, Rebecca A.
  • Journal of Biomedical Materials Research Part A, Vol. 86A, Issue 1
  • DOI: 10.1002/jbm.a.32029

Reorientation of Cellulose Nanowhiskers in Agarose Hydrogels under Tensile Loading
journal, February 2012

  • Osorio-Madrazo, Anayancy; Eder, Michaela; Rueggeberg, Markus
  • Biomacromolecules, Vol. 13, Issue 3
  • DOI: 10.1021/bm201764y

Unidirectional Alignment of Lamellar Bilayer in Hydrogel: One-Dimensional Swelling, Anisotropic Modulus, and Stress/Strain Tunable Structural Color
journal, September 2010

  • Haque, Md. Anamul; Kamita, Gen; Kurokawa, Takayuki
  • Advanced Materials, Vol. 22, Issue 45
  • DOI: 10.1002/adma.201002509

Highly Extensible Double-Network Gels with Self-Assembling Anisotropic Structure
journal, December 2008

  • Yang, Wei; Furukawa, Hidemitsu; Gong, Jian Ping
  • Advanced Materials, Vol. 20, Issue 23
  • DOI: 10.1002/adma.200801396

Pure Anisotropic Hydrogel with an Inherent Chiral Internal Structure Based on the Chiral Nematic Liquid Crystal Phase of Rodlike Viruses
journal, October 2015


Anisotropic temperature sensitive chitosan-based injectable hydrogels mimicking cartilage matrix: CHITOSAN-BASED INJECTABLE HYDROGELS MIMICKING CARTILAGE MATRIX
journal, October 2014

  • Walker, Kenneth J.; Madihally, Sundararajan V.
  • Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 103, Issue 6
  • DOI: 10.1002/jbm.b.33293

Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
journal, August 2012


Thermoresponsive Composite Hydrogels with Aligned Macroporous Structure by Ice-Templated Assembly
journal, November 2013

  • Bai, Hao; Polini, Alessandro; Delattre, Benjamin
  • Chemistry of Materials, Vol. 25, Issue 22
  • DOI: 10.1021/cm4025827

Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels
journal, January 2014


Aligned porous stimuli-responsive hydrogels via directional freezing and frozen UV initiated polymerization
journal, January 2013


Morphology of optically anisotropic agarose hydrogel prepared by directional freezing
journal, June 1990

  • Yokoyama, F.; Achife, E. C.; Momoda, J.
  • Colloid & Polymer Science, Vol. 268, Issue 6
  • DOI: 10.1007/BF01410297

Ice-template-induced silk fibroin–chitosan scaffolds with predefined microfluidic channels and fully porous structures
journal, July 2012


Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method
journal, December 2012


Composite Hydrogels with Tunable Anisotropic Morphologies and Mechanical Properties
journal, May 2016


Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance
journal, March 2017


Growth Factors, Matrices, and Forces Combine and Control Stem Cells
journal, June 2009


Nanocellulose in biomedicine: Current status and future prospect
journal, October 2014


Cellulose nanomaterials review: structure, properties and nanocomposites
journal, January 2011

  • Moon, Robert J.; Martini, Ashlie; Nairn, John
  • Chemical Society Reviews, Vol. 40, Issue 7
  • DOI: 10.1039/c0cs00108b

Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications
journal, June 2010

  • Habibi, Youssef; Lucia, Lucian A.; Rojas, Orlando J.
  • Chemical Reviews, Vol. 110, Issue 6
  • DOI: 10.1021/cr900339w

Directing the Morphology and Differentiation of Skeletal Muscle Cells Using Oriented Cellulose Nanowhiskers
journal, September 2010

  • Dugan, James M.; Gough, Julie E.; Eichhorn, Stephen J.
  • Biomacromolecules, Vol. 11, Issue 9
  • DOI: 10.1021/bm100684k

Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis
journal, January 2013


Review of Hydrogels and Aerogels Containing Nanocellulose
journal, April 2017


Negative Diamagnetic Anisotropy and Birefringence of Cellulose Nanocrystals
journal, November 2015


Orientation of cellulose microcrystals by strong magnetic fields
journal, August 1992

  • Sugiyama, J.; Chanzy, H.; Maret, G.
  • Macromolecules, Vol. 25, Issue 16
  • DOI: 10.1021/ma00042a032

First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals
journal, July 2014


Cooperative Ordering and Kinetics of Cellulose Nanocrystal Alignment in a Magnetic Field
journal, July 2016


Engineered skeletal muscle tissue networks with controllable architecture
journal, March 2009


Viscoelastic and Anisotropic Mechanical Properties of in vivo Muscle Tissue Assessed by Supersonic Shear Imaging
journal, May 2010


Orientation of skeletal muscle actin in strong magnetic fields
journal, August 1984


Magnetic field effects on assembly pattern of smooth muscle cells
journal, March 2003

  • Iwasaka, Masakazu; Miyakoshi, Junji; Ueno, Shoogo
  • In Vitro Cellular & Developmental Biology - Animal, Vol. 39, Issue 3-4
  • DOI: 10.1007/s11626-003-0005-0

Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment
journal, January 2007

  • Coletti, Dario; Teodori, Laura; Albertini, Maria C.
  • Cytometry Part A, Vol. 71A, Issue 10
  • DOI: 10.1002/cyto.a.20447

    Works referencing / citing this record:

    Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review
    journal, December 2019

    • Moohan, John; Stewart, Sarah A.; Espinosa, Eduardo
    • Applied Sciences, Vol. 10, Issue 1
    • DOI: 10.3390/app10010065

    In situ -forming, mechanically resilient hydrogels for cell delivery
    journal, January 2019

    • Young, Stuart A.; Riahinezhad, Hossein; Amsden, Brian G.
    • Journal of Materials Chemistry B, Vol. 7, Issue 38
    • DOI: 10.1039/c9tb01398a

    Biomaterials for cell transplantation
    journal, October 2018

    • Mitrousis, Nikolaos; Fokina, Ana; Shoichet, Molly S.
    • Nature Reviews Materials, Vol. 3, Issue 11
    • DOI: 10.1038/s41578-018-0057-0

    Insight into the nanostructure of anisotropic cellulose aerogels upon compression
    journal, January 2019

    • Rennhofer, Harald; Plappert, Sven F.; Lichtenegger, Helga C.
    • Soft Matter, Vol. 15, Issue 41
    • DOI: 10.1039/c9sm01422e

    Hydrogel scaffolds for tissue engineering: the importance of polymer choice
    journal, January 2020


    Directing an oligopeptide amphiphile into an aligned nanofiber matrix for elucidating molecular structures
    journal, January 2019

    • Qin, Si-Yong; Ding, Wen-Qiang; Jiang, Zhi-Wei
    • Chemical Communications, Vol. 55, Issue 11
    • DOI: 10.1039/c8cc09548e

    Design and applications of man-made biomimetic fibrillar hydrogels
    journal, January 2019


    Hydrogels for Skeletal Muscle Regeneration
    journal, January 2020

    • Fischer, Kristin M.; Scott, Tracy E.; Browe, Daniel P.
    • Regenerative Engineering and Translational Medicine
    • DOI: 10.1007/s40883-019-00146-x