skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on August 3, 2018

Title: Critical behavior of quasi-two-dimensional semiconducting ferromagnet Cr 2 Ge 2 Te 6

Some critical properties of the single-crystalline semiconducting ferromagnet Cr 2 Ge 2 Te 6 were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic phase transition. Critical exponents β = 0.200 ± 0.003 with a critical temperature T c = 62.65 ± 0.07 K and γ = 1.28 ± 0.03 with T c = 62.75 ± 0.06 K are obtained by the Kouvel-Fisher method whereas δ = 7.96 ± 0.01 is obtained by a critical isotherm analysis at T c = 62.7 K. These critical exponents obey the Widom scaling relation δ = 1 + γ / β , indicating self-consistency of the obtained values. Furthermore, with these critical exponents the isotherm M ( H ) curves below and above the critical temperatures collapse into two independent universal branches, obeying the single scaling equation m = f ± ( h ) , where m and h are renormalized magnetization and field, respectively. The determined exponents match well with those calculated from the results of the renormalization group approach for a two-dimensional Ising system coupled with a long-range interaction between spins decaying as J ( r ) ≈ r - ( d + σ ) with σ = 1.52 .
Authors:
 [1] ;  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Dept.
Publication Date:
Report Number(s):
BNL-114365-2017-JA
Journal ID: ISSN 2469-9950; PRBMDO; R&D Project: PM016; KC0201050; TRN: US1800316
Grant/Contract Number:
SC0012704
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 96; Journal Issue: 5; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1412649
Alternate Identifier(s):
OSTI ID: 1373954