skip to main content


This content will become publicly available on October 18, 2018

Title: Development of in-situ high-voltage and high-temperature stressing capability on atomic force microscopy platform

Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, and arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.
 [1] ;  [2] ;  [2] ; ORCiD logo [3] ;  [4] ;  [5] ;  [2]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Trina Solar Inc., Changzhou (China)
  4. Chinese Academy of Sciences (CAS), Ningbo (China)
  5. Colorado School of Mines, Golden, CO (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0038-092X
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Solar Energy
Additional Journal Information:
Journal Volume: 158; Journal Issue: C; Journal ID: ISSN 0038-092X
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; solar cell modules; degradation; stress; atomic force microscopy
OSTI Identifier: