DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Increased Ocean Heat Convergence Into the High Latitudes With CO2 Doubling Enhances Polar-Amplified Warming

Abstract

We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. Finally, these results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. State Univ. of New York, Albany, NY (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF)
OSTI Identifier:
1411911
Report Number(s):
PNNL-SA-128892
Journal ID: ISSN 0094-8276
Grant/Contract Number:  
AC05-76RL01830; AGS-1455071
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 44; Journal Issue: 20; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; ocean; CO2; convergence; ocean heat flux convergence; OHFC; climate; Arctic; polar; polar climate change; lapse rate feedback; ocean dynamics; Bjerknes feedback; polar amplification; winter sea ice retreat

Citation Formats

Singh, H. A., Rasch, P. J., and Rose, B. E. J. Increased Ocean Heat Convergence Into the High Latitudes With CO2 Doubling Enhances Polar-Amplified Warming. United States: N. p., 2017. Web. doi:10.1002/2017GL074561.
Singh, H. A., Rasch, P. J., & Rose, B. E. J. Increased Ocean Heat Convergence Into the High Latitudes With CO2 Doubling Enhances Polar-Amplified Warming. United States. https://doi.org/10.1002/2017GL074561
Singh, H. A., Rasch, P. J., and Rose, B. E. J. Fri . "Increased Ocean Heat Convergence Into the High Latitudes With CO2 Doubling Enhances Polar-Amplified Warming". United States. https://doi.org/10.1002/2017GL074561. https://www.osti.gov/servlets/purl/1411911.
@article{osti_1411911,
title = {Increased Ocean Heat Convergence Into the High Latitudes With CO2 Doubling Enhances Polar-Amplified Warming},
author = {Singh, H. A. and Rasch, P. J. and Rose, B. E. J.},
abstractNote = {We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. Finally, these results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.},
doi = {10.1002/2017GL074561},
journal = {Geophysical Research Letters},
number = 20,
volume = 44,
place = {United States},
year = {Fri Sep 01 00:00:00 EDT 2017},
month = {Fri Sep 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Coupling between Arctic feedbacks and changes in poleward energy transport: ENERGY TRANSPORT AND POLAR AMPLIFICATION
journal, September 2011

  • Hwang, Yen-Ting; Frierson, Dargan M. W.; Kay, Jennifer E.
  • Geophysical Research Letters, Vol. 38, Issue 17
  • DOI: 10.1029/2011GL048546

Constraints on dynamical transports of energy on a spherical planet
journal, May 1978


Maintenance of the Sea-Ice Edge
journal, August 2005

  • Bitz, C. M.; Holland, M. M.; Hunke, E. C.
  • Journal of Climate, Vol. 18, Issue 15
  • DOI: 10.1175/JCLI3428.1

Analytic radiative‐advective equilibrium as a model for high‐latitude climate
journal, January 2016

  • Cronin, Timothy W.; Jansen, Malte F.
  • Geophysical Research Letters, Vol. 43, Issue 1
  • DOI: 10.1002/2015GL067172

The Community Earth System Model: A Framework for Collaborative Research
journal, September 2013

  • Hurrell, James W.; Holland, M. M.; Gent, P. R.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 9
  • DOI: 10.1175/BAMS-D-12-00121.1

The CCSM4 Ocean Component
journal, March 2012

  • Danabasoglu, Gokhan; Bates, Susan C.; Briegleb, Bruce P.
  • Journal of Climate, Vol. 25, Issue 5
  • DOI: 10.1175/JCLI-D-11-00091.1

Relations between Northward Ocean and Atmosphere Energy Transports in a Coupled Climate Model
journal, February 2008


Polar amplification of climate change in coupled models
journal, September 2003


The Role of Oceans and Sea Ice in Abrupt Transitions between Multiple Climate States
journal, May 2013


The CALIPSO Mission: A Global 3D View of Aerosols and Clouds
journal, September 2010

  • Winker, D. M.; Pelon, J.; Coakley, J. A.
  • Bulletin of the American Meteorological Society, Vol. 91, Issue 9
  • DOI: 10.1175/2010BAMS3009.1

Ocean Heat Transport as a Cause for Model Uncertainty in Projected Arctic Warming
journal, March 2011


Arctic amplification dominated by temperature feedbacks in contemporary climate models
journal, February 2014

  • Pithan, Felix; Mauritsen, Thorsten
  • Nature Geoscience, Vol. 7, Issue 3
  • DOI: 10.1038/ngeo2071

Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements
journal, January 2008

  • Sassen, Kenneth; Wang, Zhien; Liu, Dong
  • Journal of Geophysical Research, Vol. 113
  • DOI: 10.1029/2008JD009972

Time-Varying Climate Sensitivity from Regional Feedbacks
journal, July 2013


Amplified Arctic climate change: What does surface albedo feedback have to do with it?
journal, January 2006


The Influence of Sea Ice on Ocean Heat Uptake in Response to Increasing CO 2
journal, June 2006

  • Bitz, C. M.; Gent, P. R.; Woodgate, R. A.
  • Journal of Climate, Vol. 19, Issue 11
  • DOI: 10.1175/JCLI3756.1

Using the Radiative Kernel Technique to Calculate Climate Feedbacks in NCAR’s Community Atmospheric Model
journal, May 2008

  • Shell, Karen M.; Kiehl, Jeffrey T.; Shields, Christine A.
  • Journal of Climate, Vol. 21, Issue 10
  • DOI: 10.1175/2007JCLI2044.1

Climate Sensitivity of the Community Climate System Model, Version 4
journal, May 2012


Isentropic constraints by midlatitude surface warming on the Arctic midtroposphere: ISENTROPIC ARCTIC WARMING
journal, February 2013

  • Laliberté, F.; Kushner, P. J.
  • Geophysical Research Letters, Vol. 40, Issue 3
  • DOI: 10.1029/2012GL054306

Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space
journal, October 2011

  • Bintanja, R.; Graversen, R. G.; Hazeleger, W.
  • Nature Geoscience, Vol. 4, Issue 11
  • DOI: 10.1038/ngeo1285

Explorations of Atmosphere–Ocean–Ice Climates on an Aquaplanet and Their Meridional Energy Transports
journal, June 2009

  • Enderton, Daniel; Marshall, John
  • Journal of the Atmospheric Sciences, Vol. 66, Issue 6
  • DOI: 10.1175/2008JAS2680.1

The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake
journal, February 2014

  • Rose, Brian E. J.; Armour, Kyle C.; Battisti, David S.
  • Geophysical Research Letters, Vol. 41, Issue 3
  • DOI: 10.1002/2013GL058955

Response of the atmosphere–ocean mixed-layer system to anomalous ocean heat-flux convergence
journal, April 2002

  • Sutton, R.; Mathieu, P. -P.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 128, Issue 582
  • DOI: 10.1256/003590002320373283

Isopycnal Mixing in Ocean Circulation Models
journal, January 1990


The Effects of Doubling the CO 2 Concentration on the climate of a General Circulation Model
journal, January 1975


Works referencing / citing this record:

Distinct Mechanisms of Ocean Heat Transport Into the Arctic Under Internal Variability and Climate Change
journal, August 2018

  • Oldenburg, Dylan; Armour, Kyle C.; Thompson, LuAnne
  • Geophysical Research Letters, Vol. 45, Issue 15
  • DOI: 10.1029/2018gl078719

Ocean Circulation Reduces the Hadley Cell Response to Increased Greenhouse Gases
journal, September 2018

  • Chemke, R.; Polvani, L. M.
  • Geophysical Research Letters, Vol. 45, Issue 17
  • DOI: 10.1029/2018gl079070

The Effect of Arctic Sea Ice Loss on the Hadley Circulation
journal, January 2019

  • Chemke, R.; Polvani, L. M.; Deser, C.
  • Geophysical Research Letters, Vol. 46, Issue 2
  • DOI: 10.1029/2018gl081110

Interpretation of the Top-of-Atmosphere Energy Flux for Future Arctic Warming
journal, September 2019