skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on September 9, 2018

Title: “Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, were characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.
Authors:
ORCiD logo [1] ; ORCiD logo [2] ;  [2] ;  [1]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Princeton Univ., NJ (United States). Dept. of Chemical and Biological Engineering
Publication Date:
Grant/Contract Number:
AC02-09CH11466
Type:
Accepted Manuscript
Journal Name:
Carbon
Additional Journal Information:
Journal Volume: 125; Journal Issue: C; Journal ID: ISSN 0008-6223
Publisher:
Elsevier
Research Org:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1411592