skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metriplectic integrators for the Landau collision operator

Abstract

Here, we present a novel framework for addressing the nonlinear Landau collision integral in terms of finite element and other subspace projection methods. We employ the underlying metriplectic structure of the Landau collision integral and, using a Galerkin discretization for the velocity space, we transform the infinite-dimensional system into a finite-dimensional, time-continuous metriplectic system. Temporal discretization is accomplished using the concept of discrete gradients. The conservation of energy, momentum, and particle densities, as well as the production of entropy is demonstrated algebraically for the fully discrete system. Due to the generality of our approach, the conservation properties and the monotonic behavior of entropy are guaranteed for finite element discretizations, in general, independently of the mesh configuration.

Authors:
ORCiD logo [1];  [2]
  1. Max-Planck-Institut fur Plasmaphysik, Garching (Deutschland); Technische Univ. Munchen, Garching (Deutschland)
  2. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1411216
Alternate Identifier(s):
OSTI ID: 1395914
Grant/Contract Number:  
708124; AC02-09CH11466
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 10; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Kraus, Michael, and Hirvijoki, Eero. Metriplectic integrators for the Landau collision operator. United States: N. p., 2017. Web. doi:10.1063/1.4998610.
Kraus, Michael, & Hirvijoki, Eero. Metriplectic integrators for the Landau collision operator. United States. doi:10.1063/1.4998610.
Kraus, Michael, and Hirvijoki, Eero. Mon . "Metriplectic integrators for the Landau collision operator". United States. doi:10.1063/1.4998610. https://www.osti.gov/servlets/purl/1411216.
@article{osti_1411216,
title = {Metriplectic integrators for the Landau collision operator},
author = {Kraus, Michael and Hirvijoki, Eero},
abstractNote = {Here, we present a novel framework for addressing the nonlinear Landau collision integral in terms of finite element and other subspace projection methods. We employ the underlying metriplectic structure of the Landau collision integral and, using a Galerkin discretization for the velocity space, we transform the infinite-dimensional system into a finite-dimensional, time-continuous metriplectic system. Temporal discretization is accomplished using the concept of discrete gradients. The conservation of energy, momentum, and particle densities, as well as the production of entropy is demonstrated algebraically for the fully discrete system. Due to the generality of our approach, the conservation properties and the monotonic behavior of entropy are guaranteed for finite element discretizations, in general, independently of the mesh configuration.},
doi = {10.1063/1.4998610},
journal = {Physics of Plasmas},
number = 10,
volume = 24,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws
journal, January 1983

  • Harten, Amiram; Lax, Peter D.; Leer, Bram van
  • SIAM Review, Vol. 25, Issue 1
  • DOI: 10.1137/1025002

Exactly energy conserving semi-implicit particle in cell formulation
journal, April 2017


Poisson brackets for fluids and plasmas
conference, January 1982

  • Morrison, Philip J.
  • AIP Conference Proceedings Volume 88
  • DOI: 10.1063/1.33633

Energy conserving discontinuous Galerkin spectral element method for the Vlasov–Poisson system
journal, December 2014

  • Madaule, Éric; Restelli, Marco; Sonnendrücker, Eric
  • Journal of Computational Physics, Vol. 279
  • DOI: 10.1016/j.jcp.2014.09.010

GEMPIC: geometric electromagnetic particle-in-cell methods
journal, July 2017

  • Kraus, Michael; Kormann, Katharina; Morrison, Philip J.
  • Journal of Plasma Physics, Vol. 83, Issue 4
  • DOI: 10.1017/S002237781700040X

A new class of energy-preserving numerical integration methods
journal, January 2008


The energy conserving particle-in-cell method
journal, August 2011


A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions
journal, July 2016


A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes
journal, January 2013


Energy-conserving discontinuous Galerkin methods for the Vlasov–Ampère system
journal, January 2014

  • Cheng, Yingda; Christlieb, Andrew J.; Zhong, Xinghui
  • Journal of Computational Physics, Vol. 256
  • DOI: 10.1016/j.jcp.2013.09.013

On Numerical Methods for Hamiltonian PDEs and a Collocation Method for the Vlasov–Maxwell Equations
journal, November 1996


Comments on: The Maxwell-Vlasov equations as a continuous hamiltonian system
journal, November 1981


An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm
journal, August 2011


The Maxwell-Vlasov equations as a continuous hamiltonian system
journal, December 1980


Bracket formulation for irreversible classical fields
journal, February 1984


Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system
journal, November 2011

  • Shu, Chi-Wang; Carrillo, José; Ayuso, Blanca
  • Kinetic and Related Models, Vol. 4, Issue 4
  • DOI: 10.3934/krm.2011.4.955

Dissipative hamiltonian systems: A unifying principle
journal, February 1984


Hamiltonian description of the ideal fluid
journal, April 1998


Geometric integration using discrete gradients
journal, April 1999

  • McLachlan, Robert I.; Quispel, G. R. W.; Robidoux, Nicolas
  • Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 357, Issue 1754
  • DOI: 10.1098/rsta.1999.0363

Conservative discretization of the Landau collision integral
journal, March 2017

  • Hirvijoki, E.; Adams, M. F.
  • Physics of Plasmas, Vol. 24, Issue 3
  • DOI: 10.1063/1.4979122

Variational formulation of macro-particle plasma simulation algorithms
journal, May 2014

  • Shadwick, B. A.; Stamm, A. B.; Evstatiev, E. G.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874338

Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations
journal, September 2016

  • He, Yang; Sun, Yajuan; Qin, Hong
  • Physics of Plasmas, Vol. 23, Issue 9
  • DOI: 10.1063/1.4962573

Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems
journal, January 2013

  • Cheng, Yingda; Gamba, Irene M.; Morrison, Philip J.
  • Journal of Scientific Computing, Vol. 56, Issue 2
  • DOI: 10.1007/s10915-012-9680-x

Linear energy-preserving integrators for Poisson systems
journal, January 2011


A general theory for gauge-free lifting
journal, January 2013


A discontinuous Galerkin method for the Vlasov–Poisson system
journal, February 2012

  • Heath, R. E.; Gamba, I. M.; Morrison, P. J.
  • Journal of Computational Physics, Vol. 231, Issue 4
  • DOI: 10.1016/j.jcp.2011.09.020

Bracket formulation of dissipative fluid mechanics equations
journal, June 1984


On Bogoliubov's kinetic equation for a spatially homogeneous plasma
journal, July 1960


Discontinuous Galerkin Methods for the Multi-Dimensional Vlasov–Poisson Problem
journal, October 2012

  • De Dios, Blanca Ayuso; Carrillo, JosÉ A.; Shu, Chi-Wang
  • Mathematical Models and Methods in Applied Sciences, Vol. 22, Issue 12
  • DOI: 10.1142/S021820251250042X

Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations
journal, December 2015


Bracket formulation of dissipative time evolution equations
journal, August 1985


An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov–Darwin particle-in-cell algorithm
journal, October 2014


A paradigm for joined Hamiltonian and dissipative systems
journal, January 1986


Variational formulation of particle algorithms for kinetic plasma simulations
journal, July 2013


Discontinuous Galerkin Methods for the Vlasov--Maxwell Equations
journal, January 2014

  • Cheng, Yingda; Gamba, Irene M.; Li, Fengyan
  • SIAM Journal on Numerical Analysis, Vol. 52, Issue 2
  • DOI: 10.1137/130915091

Finite Element Hodge for spline discrete differential forms. Application to the Vlasov–Poisson system
journal, May 2014


Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
journal, August 2012

  • Squire, J.; Qin, H.; Tang, W. M.
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4742985

Algebraic structure of the plasma quasilinear equations
journal, April 1982


Variational Formulation of Macroparticle Models for Electromagnetic Plasma Simulations
journal, June 2014

  • Stamm, Alexander B.; Shadwick, Bradley A.; Evstatiev, Evstati G.
  • IEEE Transactions on Plasma Science, Vol. 42, Issue 6
  • DOI: 10.1109/TPS.2014.2320461

Nonlinear stability of fluid and plasma equilibria
journal, July 1985


Structure and structure-preserving algorithms for plasma physics
journal, April 2017


Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
journal, November 2015

  • Xiao, Jianyuan; Qin, Hong; Liu, Jian
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4935904

Energy-conserving discontinuous Galerkin methods for the Vlasov–Maxwell system
journal, December 2014

  • Cheng, Yingda; Christlieb, Andrew J.; Zhong, Xinghui
  • Journal of Computational Physics, Vol. 279
  • DOI: 10.1016/j.jcp.2014.08.041

Time integration and discrete Hamiltonian systems
journal, September 1996


The Hamiltonian structure of the Maxwell-Vlasov equations
journal, March 1982


Discrete gradient methods for solving ODEs numerically while preserving a first integral
journal, July 1996