skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomically manufactured nickel–silicon quantum dots displaying robust resonant tunneling and negative differential resistance

Abstract

Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni–Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni–Si clusters. The resonance energy is reproducible and the peak spacing of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I–V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. Furthermore, all of these results are extremely encouraging towards the utilization of metal modified silicon surfacesmore » to advance or complement existing quantum information technology.« less

Authors:
 [1];  [2];  [2];  [1]
  1. Univ. of Illinois at Chicago, Chicago, IL (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1411017
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
npj Quantum Materials
Additional Journal Information:
Journal Volume: 2; Journal Issue: 1; Journal ID: ISSN 2397-4648
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Cheng, Jian -Yih, Fisher, Brandon L., Guisinger, Nathan P., and Lilley, Carmen M. Atomically manufactured nickel–silicon quantum dots displaying robust resonant tunneling and negative differential resistance. United States: N. p., 2017. Web. doi:10.1038/s41535-017-0029-4.
Cheng, Jian -Yih, Fisher, Brandon L., Guisinger, Nathan P., & Lilley, Carmen M. Atomically manufactured nickel–silicon quantum dots displaying robust resonant tunneling and negative differential resistance. United States. doi:10.1038/s41535-017-0029-4.
Cheng, Jian -Yih, Fisher, Brandon L., Guisinger, Nathan P., and Lilley, Carmen M. Mon . "Atomically manufactured nickel–silicon quantum dots displaying robust resonant tunneling and negative differential resistance". United States. doi:10.1038/s41535-017-0029-4. https://www.osti.gov/servlets/purl/1411017.
@article{osti_1411017,
title = {Atomically manufactured nickel–silicon quantum dots displaying robust resonant tunneling and negative differential resistance},
author = {Cheng, Jian -Yih and Fisher, Brandon L. and Guisinger, Nathan P. and Lilley, Carmen M.},
abstractNote = {Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni–Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni–Si clusters. The resonance energy is reproducible and the peak spacing of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I–V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. Furthermore, all of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.},
doi = {10.1038/s41535-017-0029-4},
journal = {npj Quantum Materials},
number = 1,
volume = 2,
place = {United States},
year = {2017},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath
journal, September 2010


Quantum computers
journal, March 2010


A silicon-based nuclear spin quantum computer
journal, May 1998


An addressable quantum dot qubit with fault-tolerant control-fidelity
journal, October 2014

  • Veldhorst, M.; Hwang, J. C. C.; Yang, C. H.
  • Nature Nanotechnology, Vol. 9, Issue 12
  • DOI: 10.1038/nnano.2014.216

A Complete Fabrication Route for Atomic-Scale, Donor-Based Devices in Single-Crystal Germanium
journal, June 2011

  • Scappucci, G.; Capellini, G.; Johnston, B.
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl200449v

Ring clusters in transition-metal–silicon surface structures
journal, August 1992


Unconditional quantum teleportation between distant solid-state quantum bits
journal, May 2014


Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer
journal, October 2002

  • Oberbeck, L.; Curson, N. J.; Simmons, M. Y.
  • Applied Physics Letters, Vol. 81, Issue 17
  • DOI: 10.1063/1.1516859

Atomistic study of the formation process of Ni silicide on the Si(111)-7×7 surface with scanning tunneling microscopy
journal, September 1996


A single-atom transistor
journal, February 2012

  • Fuechsle, Martin; Miwa, Jill A.; Mahapatra, Suddhasatta
  • Nature Nanotechnology, Vol. 7, Issue 4
  • DOI: 10.1038/nnano.2012.21

Room Temperature Negative Differential Resistance through Individual Organic Molecules on Silicon Surfaces
journal, January 2004

  • Guisinger, Nathan P.; Greene, Mark E.; Basu, Rajiv
  • Nano Letters, Vol. 4, Issue 1
  • DOI: 10.1021/nl0348589

Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs
journal, December 2010

  • Bluhm, Hendrik; Foletti, Sandra; Neder, Izhar
  • Nature Physics, Vol. 7, Issue 2
  • DOI: 10.1038/nphys1856

Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots
journal, August 1999

  • Banin, Uri; Cao, YunWei; Katz, David
  • Nature, Vol. 400, Issue 6744
  • DOI: 10.1038/22979

Spin-Light Coherence for Single-Spin Measurement and Control in Diamond
journal, October 2010


A quantum memory intrinsic to single nitrogen–vacancy centres in diamond
journal, June 2011

  • Fuchs, G. D.; Burkard, G.; Klimov, P. V.
  • Nature Physics, Vol. 7, Issue 10
  • DOI: 10.1038/nphys2026

Spin readout and addressability of phosphorus-donor clusters in silicon
journal, June 2013

  • Büch, H.; Mahapatra, S.; Rahman, R.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3017

Quantum computation with quantum dots
journal, January 1998


Quantum communication through spin chain dynamics: an introductory overview
journal, January 2007


Complete quantum control of a single quantum dot spin using ultrafast optical pulses
journal, November 2008

  • Press, David; Ladd, Thaddeus D.; Zhang, Bingyang
  • Nature, Vol. 456, Issue 7219
  • DOI: 10.1038/nature07530

Quantum entanglement between an optical photon and a solid-state spin qubit
journal, August 2010


Fluorine-doped ZnSe for applications in quantum information processing
journal, April 2010

  • Ladd, T. D.; Sanaka, K.; Yamamoto, Y.
  • physica status solidi (b), Vol. 247, Issue 6
  • DOI: 10.1002/pssb.200983258

Spins in few-electron quantum dots
journal, October 2007


Electron spin coherence exceeding seconds in high-purity silicon
journal, December 2011

  • Tyryshkin, Alexei M.; Tojo, Shinichi; Morton, John J. L.
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3182

Electronic structure and stability of ring clusters in the Si(111)-(√7 × √7 )Co surface
journal, July 1993


Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits
journal, April 2012

  • Shulman, M. D.; Dial, O. E.; Harvey, S. P.
  • Science, Vol. 336, Issue 6078, p. 202-205
  • DOI: 10.1126/science.1217692

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots
journal, September 2005


On-demand single-electron transfer between distant quantum dots
journal, September 2011

  • McNeil, R. P. G.; Kataoka, M.; Ford, C. J. B.
  • Nature, Vol. 477, Issue 7365
  • DOI: 10.1038/nature10444

Quantum Information Storage for over 180 s Using Donor Spins in a 28Si "Semiconductor Vacuum"
journal, June 2012


High-fidelity projective read-out of a solid-state spin quantum register
journal, September 2011

  • Robledo, Lucio; Childress, Lilian; Bernien, Hannes
  • Nature, Vol. 477, Issue 7366
  • DOI: 10.1038/nature10401

Formation of the Si(111)√19 × √19 structure induced by Ni impurity at low coverage
journal, September 1989


Embracing the quantum limit in silicon computing
journal, November 2011

  • Morton, John J. L.; McCamey, Dane R.; Eriksson, Mark A.
  • Nature, Vol. 479, Issue 7373
  • DOI: 10.1038/nature10681

Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors
journal, March 2013


Scanning tunneling spectroscopy of InAs nanocrystal quantum dots
journal, June 2000


Room temperature coherent control of defect spin qubits in silicon carbide
journal, November 2011

  • Koehl, William F.; Buckley, Bob B.; Heremans, F. Joseph
  • Nature, Vol. 479, Issue 7371
  • DOI: 10.1038/nature10562

Silicon-based Molecular Electronics
journal, October 2004

  • Rakshit, Titash; Liang, Geng-Chiau; Ghosh, Avik W.
  • Nano Letters, Vol. 4, Issue 10
  • DOI: 10.1021/nl049436t

Mapping Spin Coherence of a Single Rare-Earth Ion in a Crystal onto a Single Photon Polarization State
journal, September 2013


Silicon quantum electronics
journal, July 2013

  • Zwanenburg, Floris A.; Dzurak, Andrew S.; Morello, Andrea
  • Reviews of Modern Physics, Vol. 85, Issue 3
  • DOI: 10.1103/RevModPhys.85.961

The quantum internet
journal, June 2008


    Works referencing / citing this record:

    Quantum chemical models for the absorption of endohedral clusters on Si(111)-(7 × 7): a subtle balance between W–Si and Si–Si bonding
    journal, January 2019

    • Jin, Xiao; Arcisauskaite, Vaida; McGrady, John E.
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 25
    • DOI: 10.1039/c9cp01841g

    Quantum chemical models for the absorption of endohedral clusters on Si(111)-(7 × 7): a subtle balance between W–Si and Si–Si bonding
    journal, January 2019

    • Jin, Xiao; Arcisauskaite, Vaida; McGrady, John E.
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 25
    • DOI: 10.1039/c9cp01841g

    In2S3 Quantum Dots: Preparation, Properties and Optoelectronic Application
    journal, May 2019