DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability

Abstract

Composites of electrocatalytically active transition-metal compounds present an intriguing opportunity toward enhanced activity and stability. Here, to identify potentially scalable pairs of a catalytically active family of compounds, we demonstrate that phosphides of iron, nickel, and cobalt can be deposited on molybdenum carbide to generate nanocrystalline heterostructures. Composites synthesized via solvothermal decomposition of metal acetylacetonate salts in the presence of highly dispersed carbide nanoparticles show hydrogen evolution activities comparable to those of state-of-the-art non-noble metal catalysts. Investigation of the spent catalyst using high resolution microscopy and elemental analysis reveals that formation of carbide–phosphide composite prevents catalyst dissolution in acid electrolyte. Lattice mismatch between the two constituent electrocatalysts can be used to rationally improve electrochemical stability. Among the composites of iron, nickel, and cobalt phosphide, iron phosphide displays the lowest degree of lattice mismatch with molybdenum carbide and shows optimal electrochemical stability. Turnover rates of the composites are higher than that of the carbide substrate and compare favorably to other electrocatalysts based on earth-abundant elements. Lastly, our findings will inspire further investigation into composite nanocrystalline electrocatalysts that use molybdenum carbide as a stable catalyst support.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [4];  [5];  [6]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Tennessee, Knoxville, TN (United States). Center for Renewable Carbon
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research and Education
  3. Stanford Univ., CA (United States). Dept. of Chemical Engineering
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
  5. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering
  6. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research and Education
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1410911
Grant/Contract Number:  
AC05-00OR22725; NE0000693
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 21; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Carbide; phosphide; electrocatalysis; hydrogen evolution reaction; composite materials

Citation Formats

Regmi, Yagya N., Roy, Asa, King, Laurie A., Cullen, David A., Meyer, Harry M., Goenaga, Gabriel A., Zawodzinski, Thomas A., Labbé, Nicole, and Chmely, Stephen C. Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.7b03377.
Regmi, Yagya N., Roy, Asa, King, Laurie A., Cullen, David A., Meyer, Harry M., Goenaga, Gabriel A., Zawodzinski, Thomas A., Labbé, Nicole, & Chmely, Stephen C. Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability. United States. https://doi.org/10.1021/acs.chemmater.7b03377
Regmi, Yagya N., Roy, Asa, King, Laurie A., Cullen, David A., Meyer, Harry M., Goenaga, Gabriel A., Zawodzinski, Thomas A., Labbé, Nicole, and Chmely, Stephen C. Thu . "Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability". United States. https://doi.org/10.1021/acs.chemmater.7b03377. https://www.osti.gov/servlets/purl/1410911.
@article{osti_1410911,
title = {Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability},
author = {Regmi, Yagya N. and Roy, Asa and King, Laurie A. and Cullen, David A. and Meyer, Harry M. and Goenaga, Gabriel A. and Zawodzinski, Thomas A. and Labbé, Nicole and Chmely, Stephen C.},
abstractNote = {Composites of electrocatalytically active transition-metal compounds present an intriguing opportunity toward enhanced activity and stability. Here, to identify potentially scalable pairs of a catalytically active family of compounds, we demonstrate that phosphides of iron, nickel, and cobalt can be deposited on molybdenum carbide to generate nanocrystalline heterostructures. Composites synthesized via solvothermal decomposition of metal acetylacetonate salts in the presence of highly dispersed carbide nanoparticles show hydrogen evolution activities comparable to those of state-of-the-art non-noble metal catalysts. Investigation of the spent catalyst using high resolution microscopy and elemental analysis reveals that formation of carbide–phosphide composite prevents catalyst dissolution in acid electrolyte. Lattice mismatch between the two constituent electrocatalysts can be used to rationally improve electrochemical stability. Among the composites of iron, nickel, and cobalt phosphide, iron phosphide displays the lowest degree of lattice mismatch with molybdenum carbide and shows optimal electrochemical stability. Turnover rates of the composites are higher than that of the carbide substrate and compare favorably to other electrocatalysts based on earth-abundant elements. Lastly, our findings will inspire further investigation into composite nanocrystalline electrocatalysts that use molybdenum carbide as a stable catalyst support.},
doi = {10.1021/acs.chemmater.7b03377},
journal = {Chemistry of Materials},
number = 21,
volume = 29,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Earth-Abundant Heterogeneous Water Oxidation Catalysts
journal, October 2016


Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory
journal, November 2014

  • Zheng, Yao; Jiao, Yan; Jaroniec, Mietek
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201407031

Noble metal-free hydrogen evolution catalysts for water splitting
journal, January 2015

  • Zou, Xiaoxin; Zhang, Yu
  • Chemical Society Reviews, Vol. 44, Issue 15
  • DOI: 10.1039/C4CS00448E

Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
journal, January 2014

  • Faber, Matthew S.; Jin, Song
  • Energy Environ. Sci., Vol. 7, Issue 11
  • DOI: 10.1039/C4EE01760A

Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions – A Review
journal, January 2015


New generation, metal-free electrocatalysts for fuel cells, solar cells and water splitting
journal, January 2011

  • Winther-Jensen, Bjorn; MacFarlane, Douglas R.
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c0ee00652a

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production
journal, January 2013

  • Chen, W. -F.; Wang, C. -H.; Sasaki, K.
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c2ee23891h

Transition Metal Carbides and Nitrides in Energy Storage and Conversion
journal, February 2016


Molybdenum carbide catalysts I. Synthesis of unsupported powders
journal, July 1987


Nanocrystalline Mo 2 C as a Bifunctional Water Splitting Electrocatalyst
journal, October 2015


A Review of Phosphide-Based Materials for Electrocatalytic Hydrogen Evolution
journal, October 2015


Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage
journal, May 2016


Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction
journal, August 2016


Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction
journal, June 2013

  • Popczun, Eric J.; McKone, James R.; Read, Carlos G.
  • Journal of the American Chemical Society, Vol. 135, Issue 25
  • DOI: 10.1021/ja403440e

Three-dimensional interconnected network of nanoporous CoP nanowires as an efficient hydrogen evolution cathode
journal, January 2014

  • Gu, Shuang; Du, Hongfang; Asiri, Abdullah M.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 32
  • DOI: 10.1039/C4CP02613F

Mo2N: An efficient non-noble metal cocatalyst on CdS for enhanced photocatalytic H2 evolution under visible light irradiation
journal, December 2016


A novel ultraefficient non-noble metal composite cocatalyst Mo2N/Mo2C/graphene for enhanced photocatalytic H2 evolution
journal, July 2017


Semiconductor–Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting
journal, April 2016

  • Nellist, Michael R.; Laskowski, Forrest A. L.; Lin, Fuding
  • Accounts of Chemical Research, Vol. 49, Issue 4
  • DOI: 10.1021/acs.accounts.6b00001

Particle suspension reactors and materials for solar-driven water splitting
journal, January 2015

  • Fabian, David M.; Hu, Shu; Singh, Nirala
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE01434D

Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
journal, January 2012

  • Haussener, Sophia; Xiang, Chengxiang; Spurgeon, Joshua M.
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee23187e

An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Hu, Shu; Xiang, Chengxiang; Haussener, Sophia
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40453f

Heterogeneous photocatalyst materials for water splitting
journal, January 2009

  • Kudo, Akihiko; Miseki, Yugo
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B800489G

Electrocatalytic Activity and Stability Enhancement through Preferential Deposition of Phosphide on Carbide
journal, February 2017


Scalable and Tunable Carbide–Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass
journal, August 2017


Nickel Phosphide Nanoparticles with Hollow, Solid, and Amorphous Structures
journal, October 2009

  • Wang, Junwei; Johnston-Peck, Aaron C.; Tracy, Joseph B.
  • Chemistry of Materials, Vol. 21, Issue 19, p. 4462-4467
  • DOI: 10.1021/cm901073k

A Nonaqueous Approach to the Preparation of Iron Phosphide Nanowires
journal, February 2010


Synthesis of Single-Crystalline CoP Nanowires by a One-Pot Metal−Organic Route
journal, November 2005

  • Li, Yang; Malik, M. Azad; O'Brien, Paul
  • Journal of the American Chemical Society, Vol. 127, Issue 46
  • DOI: 10.1021/ja055963i

General Synthesis Method for Bimetallic Carbides of Group VIIIA First Row Transition Metals with Molybdenum and Tungsten
journal, April 2014

  • Regmi, Yagya N.; Leonard, Brian M.
  • Chemistry of Materials, Vol. 26, Issue 8
  • DOI: 10.1021/cm500076v

Nanostructured Co 2 P Electrocatalyst for the Hydrogen Evolution Reaction and Direct Comparison with Morphologically Equivalent CoP
journal, May 2015


XRD and TEM study of high pressure treated single-walled carbon nanotubes and C60-peapods
journal, January 2005


Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14
journal, May 2014

  • Tian, Jingqi; Liu, Qian; Asiri, Abdullah M.
  • Journal of the American Chemical Society, Vol. 136, Issue 21
  • DOI: 10.1021/ja503372r

Self-Supported FeP Nanorod Arrays: A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity
journal, October 2014

  • Liang, Yanhui; Liu, Qian; Asiri, Abdullah M.
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs501106g

One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation
journal, June 2015

  • Wang, Xiaoguang; Kolen'ko, Yury V.; Bao, Xiao-Qing
  • Angewandte Chemie International Edition, Vol. 54, Issue 28
  • DOI: 10.1002/anie.201502577

Cobalt-Doping in Molybdenum-Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution
journal, May 2016

  • Lin, Huanlei; Liu, Ning; Shi, Zhangping
  • Advanced Functional Materials, Vol. 26, Issue 31
  • DOI: 10.1002/adfm.201600915

Auger parameters and relaxation energies of phosphorus in solid compounds
journal, July 1991

  • Franke, R.; Chassé, Th.; Streubel, P.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 56, Issue 4
  • DOI: 10.1016/0368-2048(91)85035-R

X-ray photoelectron spectra and bonding in transition-metal phosphides
journal, June 1985

  • Myers, Clifford E.; Franzen, Hugo F.; Anderegg, James W.
  • Inorganic Chemistry, Vol. 24, Issue 12
  • DOI: 10.1021/ic00206a025

On chemical shifts of ESCA and Auger lines in cobalt oxides
journal, January 1977


Effect of Phosphorus and Carbon Incorporation in Amorphous Cobalt Films Prepared by Chemical Vapor Deposition
journal, January 2010

  • Henderson, Lucas B.; Ekerdt, John G.
  • Journal of The Electrochemical Society, Vol. 157, Issue 1
  • DOI: 10.1149/1.3251283

Phosphorus-Mo 2 C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation
journal, January 2017

  • Shi, Zhangping; Nie, Kaiqi; Shao, Zheng-Jiang
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00388A

Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution
journal, August 2014

  • McEnaney, Joshua M.; Crompton, J. Chance; Callejas, Juan F.
  • Chemistry of Materials, Vol. 26, Issue 16
  • DOI: 10.1021/cm502035s

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction
journal, January 2016

  • Jung, Suho; McCrory, Charles C. L.; Ferrer, Ivonne M.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA07586F

Synthesis of α-MoC 1− x Nanoparticles with a Surface-Modified SBA-15 Hard Template: Determination of Structure-Function Relationships in Acetic Acid Deoxygenation
journal, June 2016

  • Baddour, Frederick G.; Nash, Connor P.; Schaidle, Joshua A.
  • Angewandte Chemie International Edition, Vol. 55, Issue 31
  • DOI: 10.1002/anie.201602878

Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction
journal, October 2014

  • Kibsgaard, Jakob; Jaramillo, Thomas F.
  • Angewandte Chemie International Edition, Vol. 53, Issue 52
  • DOI: 10.1002/anie.201408222

Nanocrystalline Ni 5 P 4 : a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media
journal, January 2015

  • Laursen, A. B.; Patraju, K. R.; Whitaker, M. J.
  • Energy & Environmental Science, Vol. 8, Issue 3
  • DOI: 10.1039/C4EE02940B

Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution
journal, January 2017

  • Xia, Chuan; Liang, Hanfeng; Zhu, Jiajie
  • Advanced Energy Materials, Vol. 7, Issue 9
  • DOI: 10.1002/aenm.201602089

Sulfur-Decorated Molybdenum Carbide Catalysts for Enhanced Hydrogen Evolution
journal, October 2015


Shape effects of nickel phosphide nanocrystals on hydrogen evolution reaction
journal, January 2016

  • Seo, Bora; Baek, Du San; Sa, Young Jin
  • CrystEngComm, Vol. 18, Issue 32
  • DOI: 10.1039/C6CE00985A

Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst
journal, May 2017

  • Chung, Dong Young; Jun, Samuel Woojoo; Yoon, Gabin
  • Journal of the American Chemical Society, Vol. 139, Issue 19
  • DOI: 10.1021/jacs.7b01530

Works referencing / citing this record:

Bi-Metal Phosphide NiCoP: An Enhanced Catalyst for the Reduction of 4-Nitrophenol
journal, January 2019


Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review
journal, August 2018

  • Zhao, Guoqiang; Rui, Kun; Dou, Shi Xue
  • Advanced Functional Materials, Vol. 28, Issue 43
  • DOI: 10.1002/adfm.201803291

Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution
journal, August 2018

  • Gao, Qingsheng; Zhang, Wenbiao; Shi, Zhangping
  • Advanced Materials, Vol. 31, Issue 2
  • DOI: 10.1002/adma.201802880

Noble‐Metal‐Free Colloidal‐Copper Based Low Overpotential Water Oxidation Electrocatalyst
journal, July 2019

  • Babar, Noor‐Ul‐Ain; Joya, Khurram Saleem; Ehsan, Muhammad Ali
  • ChemCatChem, Vol. 11, Issue 24
  • DOI: 10.1002/cctc.201900202