skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts [Balancing activity, stability and conductivity of nanoporous core-shell Ir/IrO2 oxygen evolution catalysts]

Abstract

The selection of oxide materials for catalyzing the Oxygen Evolution Reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity – a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the Activity-Stability FactorASF. Based on this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factor of ~30 improvement ASFrelative to conventional Ir-based oxide materials and a ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. Here, we propose that the Activity-Stability FactorASF is the key “metric” for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.

Authors:
ORCiD logo [1];  [2];  [1];  [1]; ORCiD logo [3]; ORCiD logo [3];  [3]; ORCiD logo [3];  [2];  [2];  [4];  [5];  [2]
  1. Pusan National Univ., Pusan (Korea)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
  3. Korea Advanced Institute of Science and Technology, Daejeon (Korea)
  4. Johns Hopkins Univ., Baltimore, MD (United States)
  5. Drexel Univ., Philadelphia, PA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); Korea Institute of Energy Technology Evaluation and Planning (KETEP); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1410807
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Kim, Yong -Tae, Lopes, Pietro Papa, Park, Shin -Ae, Lee, A-Yeong, Lim, Jinkyu, Lee, Hyunjoo, Back, Seoin, Jung, Yousung, Danilovic, Nemanja, Stamenkovic, Vojislav, Erlebacher, Jonah, Snyder, Joshua, and Markovic, Nenad M. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts [Balancing activity, stability and conductivity of nanoporous core-shell Ir/IrO2 oxygen evolution catalysts]. United States: N. p., 2017. Web. doi:10.1038/s41467-017-01734-7.
Kim, Yong -Tae, Lopes, Pietro Papa, Park, Shin -Ae, Lee, A-Yeong, Lim, Jinkyu, Lee, Hyunjoo, Back, Seoin, Jung, Yousung, Danilovic, Nemanja, Stamenkovic, Vojislav, Erlebacher, Jonah, Snyder, Joshua, & Markovic, Nenad M. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts [Balancing activity, stability and conductivity of nanoporous core-shell Ir/IrO2 oxygen evolution catalysts]. United States. doi:10.1038/s41467-017-01734-7.
Kim, Yong -Tae, Lopes, Pietro Papa, Park, Shin -Ae, Lee, A-Yeong, Lim, Jinkyu, Lee, Hyunjoo, Back, Seoin, Jung, Yousung, Danilovic, Nemanja, Stamenkovic, Vojislav, Erlebacher, Jonah, Snyder, Joshua, and Markovic, Nenad M. Mon . "Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts [Balancing activity, stability and conductivity of nanoporous core-shell Ir/IrO2 oxygen evolution catalysts]". United States. doi:10.1038/s41467-017-01734-7. https://www.osti.gov/servlets/purl/1410807.
@article{osti_1410807,
title = {Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts [Balancing activity, stability and conductivity of nanoporous core-shell Ir/IrO2 oxygen evolution catalysts]},
author = {Kim, Yong -Tae and Lopes, Pietro Papa and Park, Shin -Ae and Lee, A-Yeong and Lim, Jinkyu and Lee, Hyunjoo and Back, Seoin and Jung, Yousung and Danilovic, Nemanja and Stamenkovic, Vojislav and Erlebacher, Jonah and Snyder, Joshua and Markovic, Nenad M.},
abstractNote = {The selection of oxide materials for catalyzing the Oxygen Evolution Reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity – a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the Activity-Stability FactorASF. Based on this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factor of ~30 improvement ASFrelative to conventional Ir-based oxide materials and a ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. Here, we propose that the Activity-Stability FactorASF is the key “metric” for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.},
doi = {10.1038/s41467-017-01734-7},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 58 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation
journal, May 2017

  • Spöri, Camillo; Kwan, Jason Tai Hong; Bonakdarpour, Arman
  • Angewandte Chemie International Edition, Vol. 56, Issue 22
  • DOI: 10.1002/anie.201608601

Oxygen evolution activity and stability of iridium in acidic media. Part 2. – Electrochemically grown hydrous iridium oxide
journal, August 2016


Oxygen evolution activity and stability of iridium in acidic media. Part 1. – Metallic iridium
journal, July 2016


Evolution of nanoporosity in dealloying
journal, March 2001

  • Erlebacher, Jonah; Aziz, Michael J.; Karma, Alain
  • Nature, Vol. 410, Issue 6827, p. 450-453
  • DOI: 10.1038/35068529

Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts
journal, May 2012

  • Subbaraman, Ram; Tripkovic, Dusan; Chang, Kee-Chul
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3313

Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion
journal, December 2013

  • Katsounaros, Ioannis; Cherevko, Serhiy; Zeradjanin, Aleksandar R.
  • Angewandte Chemie International Edition, Vol. 53, Issue 1
  • DOI: 10.1002/anie.201306588

Using Surface Segregation To Design Stable Ru-Ir Oxides for the Oxygen Evolution Reaction in Acidic Environments
journal, October 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee Chul
  • Angewandte Chemie International Edition, Vol. 53, Issue 51
  • DOI: 10.1002/anie.201406455

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts
journal, July 2015

  • Binninger, Tobias; Mohamed, Rhiyaad; Waltar, Kay
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep12167

Performance of titanium oxynitrides in the electrocatalytic oxygen evolution reaction
journal, November 2016


New Insights into Corrosion of Ruthenium and Ruthenium Oxide Nanoparticles in Acidic Media
journal, April 2015

  • Hodnik, Nejc; Jovanovič, Primož; Pavlišič, Andraž
  • The Journal of Physical Chemistry C, Vol. 119, Issue 18
  • DOI: 10.1021/acs.jpcc.5b01832

Mechanism of oxygen evolution on perovskites
journal, July 1983

  • Bockris, John O'M.; Otagawa, Takaaki
  • The Journal of Physical Chemistry, Vol. 87, Issue 15
  • DOI: 10.1021/j100238a048

Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials
journal, July 2012

  • Reier, Tobias; Oezaslan, Mehtap; Strasser, Peter
  • ACS Catalysis, Vol. 2, Issue 8
  • DOI: 10.1021/cs3003098

Rotating ring–disc electrode study of the enhanced oxygen evolution on an activated ruthenium electrode
journal, January 1990


Design principles for hydrogen evolution reaction catalyst materials
journal, November 2016


Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral pH
journal, November 2010

  • Surendranath, Yogesh; Kanan, Matthew W.; Nocera, Daniel G.
  • Journal of the American Chemical Society, Vol. 132, Issue 46
  • DOI: 10.1021/ja106102b

Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption
journal, February 2013

  • Strmcnik, Dusan; Uchimura, Masanobu; Wang, Chao
  • Nature Chemistry, Vol. 5, Issue 4
  • DOI: 10.1038/nchem.1574

Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
journal, January 2014

  • Fabbri, E.; Habereder, A.; Waltar, K.
  • Catal. Sci. Technol., Vol. 4, Issue 11
  • DOI: 10.1039/C4CY00669K

The Dealloying Critical Potential
journal, January 2002

  • Sieradzki, K.; Dimitrov, N.; Movrin, D.
  • Journal of The Electrochemical Society, Vol. 149, Issue 8
  • DOI: 10.1149/1.1492288

Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution
journal, November 2016


Relationships between Atomic Level Surface Structure and Stability/Activity of Platinum Surface Atoms in Aqueous Environments
journal, March 2016


Dissolution of Noble Metals during Oxygen Evolution in Acidic Media
journal, July 2014

  • Cherevko, Serhiy; Zeradjanin, Aleksandar R.; Topalov, Angel A.
  • ChemCatChem, Vol. 6, Issue 8
  • DOI: 10.1002/cctc.201402194

The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Nanoporous Metals with Controlled Multimodal Pore Size Distribution
journal, July 2003

  • Ding, Yi; Erlebacher, Jonah
  • Journal of the American Chemical Society, Vol. 125, Issue 26
  • DOI: 10.1021/ja035318g

A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction
journal, September 2016


Energy and fuels from electrochemical interfaces
journal, December 2016

  • Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4738

Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts
journal, October 2010

  • Snyder, J.; Fujita, T.; Chen, M. W.
  • Nature Materials, Vol. 9, Issue 11
  • DOI: 10.1038/nmat2878

Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment
journal, November 2014


Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
journal, January 2015

  • Hong, Wesley T.; Risch, Marcel; Stoerzinger, Kelsey A.
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C4EE03869J

Electrocatalysis in the anodic evolution of oxygen and chlorine
journal, November 1984


A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011


Structure/Processing/Properties Relationships in Nanoporous Nanoparticles As Applied to Catalysis of the Cathodic Oxygen Reduction Reaction
journal, May 2012

  • Snyder, Joshua; McCue, Ian; Livi, Ken
  • Journal of the American Chemical Society, Vol. 134, Issue 20
  • DOI: 10.1021/ja3019498

Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
journal, January 2017

  • Grimaud, Alexis; Diaz-Morales, Oscar; Han, Binghong
  • Nature Chemistry, Vol. 9, Issue 5
  • DOI: 10.1038/nchem.2695

Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
journal, July 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee-Chul
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz501061n

Dealloying Silver/Gold Alloys in Neutral Silver Nitrate Solution: Porosity Evolution, Surface Composition, and Surface Oxides
journal, January 2008

  • Snyder, J.; Livi, K.; Erlebacher, J.
  • Journal of The Electrochemical Society, Vol. 155, Issue 8, p. C464-C473
  • DOI: 10.1149/1.2940319

An Atomistic Description of Dealloying
journal, January 2004

  • Erlebacher, Jonah
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1784820

Electrochemical faceting of metal electrodes
journal, November 1986


Dealloyed Pt-based core-shell oxygen reduction electrocatalysts
journal, November 2016


Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction
journal, November 2015

  • Staszak-Jirkovský, Jakub; Malliakas, Christos D.; Lopes, Pietro P.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4481

    Works referencing / citing this record:

    Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting
    journal, January 2019

    • Hu, Congling; Zhang, Lei; Gong, Jinlong
    • Energy & Environmental Science, Vol. 12, Issue 9
    • DOI: 10.1039/c9ee01202h

    Interfacial effects in supported catalysts for electrocatalysis
    journal, January 2019

    • Li, Hao; Chen, Chen; Yan, Dafeng
    • Journal of Materials Chemistry A, Vol. 7, Issue 41
    • DOI: 10.1039/c9ta04888j

    Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting
    journal, January 2019

    • Hu, Congling; Zhang, Lei; Gong, Jinlong
    • Energy & Environmental Science, Vol. 12, Issue 9
    • DOI: 10.1039/c9ee01202h

    Interfacial effects in supported catalysts for electrocatalysis
    journal, January 2019

    • Li, Hao; Chen, Chen; Yan, Dafeng
    • Journal of Materials Chemistry A, Vol. 7, Issue 41
    • DOI: 10.1039/c9ta04888j