skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Time-resolved diffraction of shock-released SiO 2 and diaplectic glass formation

Abstract

Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite on shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.

Authors:
 [1];  [2];  [3];  [3];  [3];  [4];  [2];  [5];  [6];  [7]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  5. Center for High Pressure Science and Technology Advanced Research, Shanghai (China); Carnegie Inst. of Washington, Argonne, IL (United States). Geophysical Lab., High Pressure Synergetic Consortium (HPSync)
  6. Friedrich Schiller Univ., Jena (Germany). Inst. fur Geowissenschaften
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1410511
Alternate Identifier(s):
OSTI ID: 1411351
Report Number(s):
[LA-UR-17-23638]
[Journal ID: ISSN 2041-1723; PII: 1791; TRN: US1800115]
Grant/Contract Number:  
[AC02-76SF00515; AC02-05CH11231; AC52-06NA25396]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
[ Journal Volume: 8; Journal Issue: 1]; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Gleason, A. E., Bolme, C. A., Lee, H. J., Nagler, B., Galtier, E., Kraus, R. G., Sandberg, R., Yang, W., Langenhorst, F., and Mao, W. L. Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation. United States: N. p., 2017. Web. doi:10.1038/s41467-017-01791-y.
Gleason, A. E., Bolme, C. A., Lee, H. J., Nagler, B., Galtier, E., Kraus, R. G., Sandberg, R., Yang, W., Langenhorst, F., & Mao, W. L. Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation. United States. doi:10.1038/s41467-017-01791-y.
Gleason, A. E., Bolme, C. A., Lee, H. J., Nagler, B., Galtier, E., Kraus, R. G., Sandberg, R., Yang, W., Langenhorst, F., and Mao, W. L. Tue . "Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation". United States. doi:10.1038/s41467-017-01791-y. https://www.osti.gov/servlets/purl/1410511.
@article{osti_1410511,
title = {Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation},
author = {Gleason, A. E. and Bolme, C. A. and Lee, H. J. and Nagler, B. and Galtier, E. and Kraus, R. G. and Sandberg, R. and Yang, W. and Langenhorst, F. and Mao, W. L.},
abstractNote = {Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite on shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.},
doi = {10.1038/s41467-017-01791-y},
journal = {Nature Communications},
number = [1],
volume = [8],
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Spectroscopic Evidence for Pressure-Induced Coordination Changes in Silicate Glasses and Melts
journal, February 1988


Pressure-induced amorphization and polyamorphism: Inorganic and biochemical systems
journal, April 2014


A new dense silica polymorph: A possible link between tetrahedrally and octahedrally coordinated silica
journal, February 2004

  • Luo, Sheng-Nian; Tschauner, Oliver; Asimow, Paul D.
  • American Mineralogist, Vol. 89, Issue 2-3
  • DOI: 10.2138/am-2004-2-327

Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory*
journal, March 1994


Post-shock temperatures in minerals
journal, September 1979


The Majorite-Pyrope + Magnesiowustite Assemblage: Constraints on the History of Shock Veins in Chondrites
journal, March 1996


A hydrocode equation of state for SiO 2
journal, December 2007


Shock temperatures in silica glass: Implications for modes of shock-induced deformation, phase transformation, and melting with pressure
journal, January 1989

  • Schmitt, Douglas R.; Ahrens, Thomas J.
  • Journal of Geophysical Research, Vol. 94, Issue B5
  • DOI: 10.1029/JB094iB05p05851

Tissintite, (Ca, Na, □)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite
journal, July 2015


Compression Freezing Kinetics of Water to Ice VII
journal, July 2017


Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite
journal, November 2014


Dynamic response of fused quartz in the permanent densification region
journal, May 1981

  • Sugiura, H.; Kondo, K.; Sawaoka, A.
  • Journal of Applied Physics, Vol. 52, Issue 5
  • DOI: 10.1063/1.329161

Quartz and Feldspar Glasses Produced by Natural and Experimental Shock
journal, September 1972


Recovery of stishovite-structure at ambient conditions out of shock-generated amorphous silica
journal, November 2006

  • Tschauner, O.; Luo, S. -N.; Asimow, P. D.
  • American Mineralogist, Vol. 91, Issue 11-12
  • DOI: 10.2138/am.2006.2015

Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2
journal, September 2015

  • Gleason, A. E.; Bolme, C. A.; Lee, H. J.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9191

Pressure-induced amorphization of crystalline silica
journal, July 1988

  • Hemley, R. J.; Jephcoat, A. P.; Mao, H. K.
  • Nature, Vol. 334, Issue 6177
  • DOI: 10.1038/334052a0

Stishovite: Synthesis by Shock Wave
journal, January 1965


Microscopic evidence of stishovite generated in low-pressure shock experiments on porous sandstone: Constraints on its genesis
journal, April 2017

  • Mansfeld, Ulrich; Langenhorst, Falko; Ebert, Matthias
  • Meteoritics & Planetary Science, Vol. 52, Issue 7
  • DOI: 10.1111/maps.12867

Dynamic compression of SiO 2 : A new interpretation : DYNAMIC COMPRESSION OF SIO
journal, May 2002

  • Akins, Joseph A.; Ahrens, Thomas J.
  • Geophysical Research Letters, Vol. 29, Issue 10
  • DOI: 10.1029/2002GL014806

Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass
journal, June 2011

  • Manghnani, Murli H.; Hushur, Anwar; Sekine, Toshimori
  • Journal of Applied Physics, Vol. 109, Issue 11
  • DOI: 10.1063/1.3592346

Shock experiments on pre-heated α- and β-quartz: II. X-ray and TEM investigations
journal, December 1994


Postshock temperatures in silica
journal, January 1988


Discovery of natural MgSiO 3 tetragonal garnet in a shocked chondritic meteorite
journal, March 2016

  • Tomioka, Naotaka; Miyahara, Masaaki; Ito, Motoo
  • Science Advances, Vol. 2, Issue 3
  • DOI: 10.1126/sciadv.1501725

Shock metamorphism of quartz with initial temperatures ?170 to + 1000� C
journal, December 1992

  • Gratz, A. J.; Nellis, W. J.; Christie, J. M.
  • Physics and Chemistry of Minerals, Vol. 19, Issue 5
  • DOI: 10.1007/BF00204005

A Raman spectroscopic study of shocked single crystalline quartz
journal, August 1992

  • McMillan, PaulF.; Wolf, GeorgeH.; Lambert, Phillipe
  • Physics and Chemistry of Minerals, Vol. 19, Issue 2
  • DOI: 10.1007/BF00198604

Progress in 2 mm Glow Discharge Polymer Mandrel Development for NIF
journal, March 2004

  • Nikroo, A.; Bousquet, J.; Cook, R.
  • Fusion Science and Technology, Vol. 45, Issue 2
  • DOI: 10.13182/FST45-2-165

A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source
journal, August 2005

  • Kunz, Martin; MacDowell, Alastair A.; Caldwell, Wendel A.
  • Journal of Synchrotron Radiation, Vol. 12, Issue 5
  • DOI: 10.1107/S0909049505020959

Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate
journal, March 2017

  • Adcock, C. T.; Tschauner, O.; Hausrath, E. M.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14667

High-pressure x-ray diffraction of SiO 2 glass
journal, August 1992


High-pressure structural transformation of SiO 2 glass up to 100 GPa
journal, November 2010


Uncertainties in the shock devolatilization of hydrated minerals: A nontronite case study: SHOCK DEVOLATILIZATION OF NONTRONITE
journal, October 2013

  • Kraus, R. G.; Stewart, S. T.; Newman, M. G.
  • Journal of Geophysical Research: Planets, Vol. 118, Issue 10
  • DOI: 10.1002/jgre.20147

Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite
journal, February 2017

  • Bindi, Luca; Chen, Ming; Xie, Xiande
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep42674

Shock compression and isentropic release of granite
journal, February 1995


    Works referencing / citing this record:

    Direct imaging of ultrafast lattice dynamics
    journal, March 2019

    • Brown, S. Brennan; Gleason, A. E.; Galtier, E.
    • Science Advances, Vol. 5, Issue 3
    • DOI: 10.1126/sciadv.aau8044