skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Surface Area MoS2/Graphene Hybrid Aerogel for Ultrasensitive NO2 Detection

Abstract

A MoS2/graphene hybrid aerogel synthesized with two-dimensional MoS2 sheets coating a high surface area graphene aerogel scaffold is characterized and used for ultrasensitive NO2 detection. The combination of graphene and MoS2 leads to improved sensing properties with the graphene scaffold providing high specific surface area and high electrical and thermal conductivity and the single to few-layer MoS2 sheets providing high sensitivity and selectivity to NO2. The hybrid aerogel is integrated onto a low-power microheater platform to probe the gas sensing performance. At room temperature, the sensor exhibits an ultralow detection limit of 50 ppb NO2. By heating the material to 200 °C, the response and recovery times to reach 90% of the final signal decrease to <1 min, while retaining the low detection limit. The MoS2/graphene hybrid also shows good selectivity for NO2 against H2 and CO, especially when compared to bare graphene aerogel. The unique structure of the hybrid aerogel is responsible for the ultrasensitive, selective, and fast NO2 sensing. The improved sensing performance of this hybrid aerogel also suggests the possibility of other 2D material combinations for further sensing applications.

Authors:
 [1];  [2];  [3];  [4];  [4];  [3];  [2];  [5];  [2]
  1. Univ. of California, Berkeley, CA (United States). Berkeley Sensor & Actuator Center; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Huazhong Univ. of Science and Technology, Wuhan (China)
  2. Univ. of California, Berkeley, CA (United States). Berkeley Sensor & Actuator Center; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Physics; Univ. of California, Berkeley, CA (United States). Kavli Energy NanoSciences Inst.
  4. Huazhong Univ. of Science and Technology, Wuhan (China)
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences Directorate
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Laboratory Directed Research and Development (LDRD) Program; National Science Foundation (NSF); China Scholarship Council; US Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1410012
Alternate Identifier(s):
OSTI ID: 1440935
Report Number(s):
LLNL-JRNL-702422
Journal ID: ISSN 1616-301X
Grant/Contract Number:  
AC52-07NA27344; AC02-05CH11231; FA9550-14-1-0323; IIP 1444950
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 26; Journal Issue: 28; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; molybdenum disulfide; graphene; hybrid aerogel; gas sensor; microheater

Citation Formats

Long, Hu, Harley-Trochimczyk, Anna, Pham, Thang, Tang, Zirong, Shi, Tielin, Zettl, Alex, Carraro, Carlo, Worsley, Marcus A., and Maboudian, Roya. High Surface Area MoS2/Graphene Hybrid Aerogel for Ultrasensitive NO2 Detection. United States: N. p., 2016. Web. doi:10.1002/adfm.201601562.
Long, Hu, Harley-Trochimczyk, Anna, Pham, Thang, Tang, Zirong, Shi, Tielin, Zettl, Alex, Carraro, Carlo, Worsley, Marcus A., & Maboudian, Roya. High Surface Area MoS2/Graphene Hybrid Aerogel for Ultrasensitive NO2 Detection. United States. doi:10.1002/adfm.201601562.
Long, Hu, Harley-Trochimczyk, Anna, Pham, Thang, Tang, Zirong, Shi, Tielin, Zettl, Alex, Carraro, Carlo, Worsley, Marcus A., and Maboudian, Roya. Mon . "High Surface Area MoS2/Graphene Hybrid Aerogel for Ultrasensitive NO2 Detection". United States. doi:10.1002/adfm.201601562. https://www.osti.gov/servlets/purl/1410012.
@article{osti_1410012,
title = {High Surface Area MoS2/Graphene Hybrid Aerogel for Ultrasensitive NO2 Detection},
author = {Long, Hu and Harley-Trochimczyk, Anna and Pham, Thang and Tang, Zirong and Shi, Tielin and Zettl, Alex and Carraro, Carlo and Worsley, Marcus A. and Maboudian, Roya},
abstractNote = {A MoS2/graphene hybrid aerogel synthesized with two-dimensional MoS2 sheets coating a high surface area graphene aerogel scaffold is characterized and used for ultrasensitive NO2 detection. The combination of graphene and MoS2 leads to improved sensing properties with the graphene scaffold providing high specific surface area and high electrical and thermal conductivity and the single to few-layer MoS2 sheets providing high sensitivity and selectivity to NO2. The hybrid aerogel is integrated onto a low-power microheater platform to probe the gas sensing performance. At room temperature, the sensor exhibits an ultralow detection limit of 50 ppb NO2. By heating the material to 200 °C, the response and recovery times to reach 90% of the final signal decrease to <1 min, while retaining the low detection limit. The MoS2/graphene hybrid also shows good selectivity for NO2 against H2 and CO, especially when compared to bare graphene aerogel. The unique structure of the hybrid aerogel is responsible for the ultrasensitive, selective, and fast NO2 sensing. The improved sensing performance of this hybrid aerogel also suggests the possibility of other 2D material combinations for further sensing applications.},
doi = {10.1002/adfm.201601562},
journal = {Advanced Functional Materials},
number = 28,
volume = 26,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 153 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

MoS 2 /Graphene Cocatalyst for Efficient Photocatalytic H 2 Evolution under Visible Light Irradiation
journal, June 2014

  • Chang, Kun; Mei, Zongwei; Wang, Tao
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn5019945

Strong Photoluminescence Enhancement of MoS 2 through Defect Engineering and Oxygen Bonding
journal, May 2014

  • Nan, Haiyan; Wang, Zilu; Wang, Wenhui
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn500532f

Mechanically robust 3D graphene macroassembly with high surface area
journal, January 2012

  • Worsley, Marcus A.; Kucheyev, Sergei O.; Mason, Harris E.
  • Chemical Communications, Vol. 48, Issue 67, p. 8428-8430
  • DOI: 10.1039/c2cc33979j

MoS2 Nanoparticles Grown on Graphene An Advanced Catalyst for the Hydrogen Evolution Reaction
journal, May 2011

  • Li, Yanguang; Wang, Hailiang; Xie, Liming
  • Journal of the American Chemical Society, Vol. 133, Issue 19, p. 7296-7299
  • DOI: 10.1021/ja201269b

Chemical Vapor Sensing with Monolayer MoS2
journal, January 2013

  • Perkins, F. K.; Friedman, A. L.; Cobas, E.
  • Nano Letters, Vol. 13, Issue 2, p. 668-673
  • DOI: 10.1021/nl3043079

Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene
journal, March 2013

  • Butler, Sheneve Z.; Hollen, Shawna M.; Cao, Linyou
  • ACS Nano, Vol. 7, Issue 4, p. 2898-2926
  • DOI: 10.1021/nn400280c

Bifunctional Sensing Characteristics of Chemical Vapor Deposition Synthesized Atomic-Layered MoS 2
journal, January 2015

  • Cho, Byungjin; Kim, Ah Ra; Park, Youngjin
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 4
  • DOI: 10.1021/am508535x

Synthesis and Characterization of Highly Crystalline Graphene Aerogels
journal, October 2014

  • Worsley, Marcus A.; Pham, Thang T.; Yan, Aiming
  • ACS Nano, Vol. 8, Issue 10, p. 11013-11022
  • DOI: 10.1021/nn505335u

Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices
journal, October 2013

  • Roy, Kallol; Padmanabhan, Medini; Goswami, Srijit
  • Nature Nanotechnology, Vol. 8, Issue 11
  • DOI: 10.1038/nnano.2013.206

Ultralow Density, Monolithic WS 2 , MoS 2 , and MoS 2 /Graphene Aerogels
journal, April 2015


Graphene: Status and Prospects
journal, June 2009


Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors
journal, February 2015


Molecular Doping of Graphene
journal, January 2008

  • Wehling, T. O.; Novoselov, K. S.; Morozov, S. V.
  • Nano Letters, Vol. 8, Issue 1
  • DOI: 10.1021/nl072364w

Graphene/MoS 2 Heterostructures for Ultrasensitive Detection of DNA Hybridisation
journal, May 2014

  • Loan, Phan Thi Kim; Zhang, Wenjing; Lin, Cheng-Te
  • Advanced Materials, Vol. 26, Issue 28
  • DOI: 10.1002/adma.201401084

Reduced Graphene Oxide Molecular Sensors
journal, October 2008

  • Robinson, Jeremy T.; Perkins, F. Keith; Snow, Eric S.
  • Nano Letters, Vol. 8, Issue 10
  • DOI: 10.1021/nl8013007

Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field
journal, January 2013

  • Yue, Qu; Shao, Zhengzheng; Chang, Shengli
  • Nanoscale Research Letters, Vol. 8, Issue 1
  • DOI: 10.1186/1556-276X-8-425

Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition
journal, January 2009

  • Reina, Alfonso; Jia, Xiaoting; Ho, John
  • Nano Letters, Vol. 9, Issue 1
  • DOI: 10.1021/nl801827v

Fabrication of Flexible MoS2 Thin-Film Transistor Arrays for Practical Gas-Sensing Applications
journal, July 2012


Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy
journal, December 2013

  • Yan, Rusen; Simpson, Jeffrey R.; Bertolazzi, Simone
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405826k

MoS 2 functionalization for ultra-thin atomic layer deposited dielectrics
journal, March 2014

  • Azcatl, Angelica; McDonnell, Stephen; K. C., Santosh
  • Applied Physics Letters, Vol. 104, Issue 11
  • DOI: 10.1063/1.4869149

Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO 2 Reduction
journal, July 2014


Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel
journal, January 2015

  • Harley-Trochimczyk, Anna; Chang, Jiyoung; Zhou, Qin
  • Sensors and Actuators B: Chemical, Vol. 206
  • DOI: 10.1016/j.snb.2014.09.057

Low-power, fast, selective nanoparticle-based hydrogen sulfide gas sensor
journal, April 2012

  • Mickelson, William; Sussman, Allen; Zettl, Alex
  • Applied Physics Letters, Vol. 100, Issue 17, Article No. 173110
  • DOI: 10.1063/1.3703761

Flexible and Transparent Gas Molecule Sensor Integrated with Sensing and Heating Graphene Layers
journal, May 2014


Practical Chemical Sensors from Chemically Derived Graphene
journal, February 2009

  • Fowler, Jesse D.; Allen, Matthew J.; Tung, Vincent C.
  • ACS Nano, Vol. 3, Issue 2, p. 301-306
  • DOI: 10.1021/nn800593m

Supercapacitor Electrodes Obtained by Directly Bonding 2D MoS 2 on Reduced Graphene Oxide
journal, November 2013

  • da Silveira Firmiano, Edney Geraldo; Rabelo, Adriano C.; Dalmaschio, Cleocir J.
  • Advanced Energy Materials, Vol. 4, Issue 6
  • DOI: 10.1002/aenm.201301380

MoS 2 Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution
journal, September 2015

  • Zhao, Yufei; Xie, Xiuqiang; Zhang, Jinqiang
  • Chemistry - A European Journal, Vol. 21, Issue 45
  • DOI: 10.1002/chem.201501964

Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


High-Concentration Aqueous Dispersions of MoS 2
journal, February 2013

  • Yao, Yagang; Tolentino, Lorenzo; Yang, Zhongzheng
  • Advanced Functional Materials, Vol. 23, Issue 28
  • DOI: 10.1002/adfm.201201843

Platinum Nanoparticle Loading of Boron Nitride Aerogel and Its Use as a Novel Material for Low-Power Catalytic Gas Sensing
journal, December 2015

  • Harley-Trochimczyk, Anna; Pham, Thang; Chang, Jiyoung
  • Advanced Functional Materials, Vol. 26, Issue 3
  • DOI: 10.1002/adfm.201503605

Superior Thermal Conductivity of Single-Layer Graphene
journal, March 2008

  • Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong
  • Nano Letters, Vol. 8, Issue 3, p. 902-907
  • DOI: 10.1021/nl0731872

Synthesis of molybdenum disulfide/carbon aerogel composites for supercapacitors electrode material application
journal, September 2015


Nanotube Molecular Wires as Chemical Sensors
journal, January 2000


Reduced Graphene Oxide Electrically Contacted Graphene Sensor for Highly Sensitive Nitric Oxide Detection
journal, August 2011

  • Li, Weiwei; Geng, Xiumei; Guo, Yufen
  • ACS Nano, Vol. 5, Issue 9, p. 6955-6961
  • DOI: 10.1021/nn201433r

Selective chemical vapor sensing with few-layer MoS 2 thin-film transistors: Comparison with graphene devices
journal, January 2015

  • Samnakay, R.; Jiang, C.; Rumyantsev, S. L.
  • Applied Physics Letters, Vol. 106, Issue 2
  • DOI: 10.1063/1.4905694

Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors
journal, August 2006

  • Robinson, Joshua A.; Snow, Eric S.; Bǎdescu, Ştefan C.
  • Nano Letters, Vol. 6, Issue 8
  • DOI: 10.1021/nl0612289

High-Performance Sensors Based on Molybdenum Disulfide Thin Films
journal, September 2013

  • Lee, Kangho; Gatensby, Riley; McEvoy, Niall
  • Advanced Materials, Vol. 25, Issue 46
  • DOI: 10.1002/adma.201303230

Detection of individual gas molecules adsorbed on graphene
journal, July 2007

  • Schedin, F.; Geim, A. K.; Morozov, S. V.
  • Nature Materials, Vol. 6, Issue 9, p. 652-655
  • DOI: 10.1038/nmat1967

In Situ Localized Growth of Porous Tin Oxide Films on Low Power Microheater Platform for Low Temperature CO Detection
journal, February 2016


The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Graphene-based nitrogen dioxide gas sensors
journal, July 2010


Synthesis of Graphene Aerogel with High Electrical Conductivity
journal, October 2010

  • Worsley, Marcus A.; Pauzauskie, Peter J.; Olson, Tammy Y.
  • Journal of the American Chemical Society, Vol. 132, Issue 40, p. 14067-14069
  • DOI: 10.1021/ja1072299

Basic Aspects and Challenges of Semiconductor Gas Sensors
journal, June 1999


Sensing Behavior of Atomically Thin-Layered MoS 2 Transistors
journal, May 2013

  • Late, Dattatray J.; Huang, Yi-Kai; Liu, Bin
  • ACS Nano, Vol. 7, Issue 6
  • DOI: 10.1021/nn400026u

Charge-transfer-based Gas Sensing Using Atomic-layer MoS2
journal, January 2015

  • Cho, Byungjin; Hahm, Myung Gwan; Choi, Minseok
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08052

Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Tunable Volatile Organic Compounds Sensor by Using Thiolated Ligand Conjugation on MoS 2
journal, September 2014

  • Kim, Jong-Seon; Yoo, Hae-Wook; Choi, Hyung Ouk
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502906a

    Works referencing / citing this record:

    Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites
    journal, October 2017

    • Tung, Tran Thanh; Nine, Md J.; Krebsz, Melinda
    • Advanced Functional Materials, Vol. 27, Issue 46
    • DOI: 10.1002/adfm.201702891

    Low-Dimensional Transition Metal Dichalcogenide Nanostructures Based Sensors
    journal, August 2016

    • Li, Bang Lin; Wang, Jinping; Zou, Hao Lin
    • Advanced Functional Materials, Vol. 26, Issue 39
    • DOI: 10.1002/adfm.201602136

    Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites
    journal, October 2017

    • Tung, Tran Thanh; Nine, Md J.; Krebsz, Melinda
    • Advanced Functional Materials, Vol. 27, Issue 46
    • DOI: 10.1002/adfm.201702891