skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deciphering the kinetic structure of multi-ion plasma shocks

Abstract

Here, strong collisional shocks in multi-ion plasmas are featured in many high-energy-density environments, including inertial confinement fusion implosions. However, their basic structure and its dependence on key parameters (e.g., the Mach number and the plasma ion composition) are poorly understood, and inconsistencies in that regard remain in the literature. In particular, the shock width's dependence on the Mach number has been hotly debated for decades. Using a high-fidelity Vlasov-Fokker-Planck code, iFP, and direct comparisons to multi-ion hydrodynamic simulations and semianalytic predictions, we resolve the structure of steady-state planar shocks in D- 3He plasmas. Additionally, we derive and confirm with kinetic simulations a quantitative description of the dependence of the shock width on the Mach number and initial ion concentration.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1409781
Alternate Identifier(s):
OSTI ID: 1408931
Report Number(s):
LA-UR-17-25337
Journal ID: ISSN 2470-0045; PLEEE8; TRN: US1703320
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 96; Journal Issue: 5; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Keenan, Brett D., Simakov, Andrei N., Chacón, Luis, and Taitano, William T. Deciphering the kinetic structure of multi-ion plasma shocks. United States: N. p., 2017. Web. doi:10.1103/PhysRevE.96.053203.
Keenan, Brett D., Simakov, Andrei N., Chacón, Luis, & Taitano, William T. Deciphering the kinetic structure of multi-ion plasma shocks. United States. doi:10.1103/PhysRevE.96.053203.
Keenan, Brett D., Simakov, Andrei N., Chacón, Luis, and Taitano, William T. Wed . "Deciphering the kinetic structure of multi-ion plasma shocks". United States. doi:10.1103/PhysRevE.96.053203. https://www.osti.gov/servlets/purl/1409781.
@article{osti_1409781,
title = {Deciphering the kinetic structure of multi-ion plasma shocks},
author = {Keenan, Brett D. and Simakov, Andrei N. and Chacón, Luis and Taitano, William T.},
abstractNote = {Here, strong collisional shocks in multi-ion plasmas are featured in many high-energy-density environments, including inertial confinement fusion implosions. However, their basic structure and its dependence on key parameters (e.g., the Mach number and the plasma ion composition) are poorly understood, and inconsistencies in that regard remain in the literature. In particular, the shock width's dependence on the Mach number has been hotly debated for decades. Using a high-fidelity Vlasov-Fokker-Planck code, iFP, and direct comparisons to multi-ion hydrodynamic simulations and semianalytic predictions, we resolve the structure of steady-state planar shocks in D-3He plasmas. Additionally, we derive and confirm with kinetic simulations a quantitative description of the dependence of the shock width on the Mach number and initial ion concentration.},
doi = {10.1103/PhysRevE.96.053203},
journal = {Physical Review E},
number = 5,
volume = 96,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Strong plasma shock structures based on the Navier–Stokes equations
journal, January 1975


Asymptotic separation in multispecies collisional plasma shocks
journal, July 2014


An equilibrium-preserving discretization for the nonlinear Rosenbluth–Fokker–Planck operator in arbitrary multi-dimensional geometry
journal, June 2017


Plasma kinetic effects on interfacial mix
journal, November 2016

  • Yin, L.; Albright, B. J.; Taitano, W.
  • Physics of Plasmas, Vol. 23, Issue 11
  • DOI: 10.1063/1.4966562

Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility
journal, February 2014

  • Simakov, Andrei N.; Wilson, Douglas C.; Yi, Sunghwan A.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4864331

Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging
journal, June 2015

  • Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.
  • Physics of Plasmas, Vol. 22, Issue 6
  • DOI: 10.1063/1.4921935

The structure of a shock wave in a fully ionized gas
journal, December 1957


Limiting Mach number of an embedded ion shock
journal, January 1973


An adaptive, conservative 0D-2V multispecies Rosenbluth–Fokker–Planck solver for arbitrarily disparate mass and temperature regimes
journal, August 2016


Plasma ion stratification by weak planar shocks
journal, September 2017

  • Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.4995427

A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth–Fokker–Planck equation
journal, September 2015


Species separation and kinetic effects in collisional plasma shocks
journal, May 2014

  • Bellei, C.; Rinderknecht, H.; Zylstra, A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876614

Hydrodynamic description of an unmagnetized plasma with multiple ion species. I. General formulation
journal, March 2016

  • Simakov, Andrei N.; Molvig, Kim
  • Physics of Plasmas, Vol. 23, Issue 3
  • DOI: 10.1063/1.4943894

Bimodal Model for Shock Wave Structure
journal, January 1960


Hydrodynamic description of an unmagnetized plasma with multiple ion species. II. Two and three ion species plasmas
journal, March 2016

  • Simakov, Andrei N.; Molvig, Kim
  • Physics of Plasmas, Vol. 23, Issue 3
  • DOI: 10.1063/1.4943895

Separation of ions on the front of a shock wave in a multicomponent plasma
journal, February 2016


Structure of a Plasma Shock Wave
journal, January 1964

  • Jaffrin, Michel Y.; Probstein, Ronald F.
  • Physics of Fluids, Vol. 7, Issue 10
  • DOI: 10.1063/1.1711072

Ion kinetic simulations of the formation and propagation of a planar collisional shock wave in a plasma
journal, September 1993

  • Vidal, F.; Matte, J. P.; Casanova, M.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 9
  • DOI: 10.1063/1.860654

The Solution of the Boltzmann Equation for a Shock Wave
journal, June 1951


Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions
journal, January 2015


Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF
journal, December 2014

  • Rosenberg, M. J.; Zylstra, A. B.; Séguin, F. H.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4905064

Ion Fokker-Planck simulation of D- 3 He gas target implosions
journal, December 2012


Structure of a Shock Wave in Fully Ionized Hydrogen
journal, September 1958


Thickness of an embedded ion shock
journal, January 1975

  • Greywall, Mahesh S.
  • Physics of Fluids, Vol. 18, Issue 11
  • DOI: 10.1063/1.861042

Electron transport in a collisional plasma with multiple ion species
journal, February 2014

  • Simakov, Andrei N.; Molvig, Kim
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4867183