skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-efficiency thermoelectric Ba 8 Cu 14 Ge 6 P 26 : bridging the gap between tetrel-based and tetrel-free clathrates

Abstract

A new type-I clathrate, Ba8Cu14Ge6P26, was synthesized by solid-state methods as a polycrystalline powder and grown as a cm-sized single crystal via the vertical Bridgman method. Single-crystal and powder X-ray diffraction show that Ba8Cu14Ge6P26 crystallizes in the cubic space group Pm$$\bar{3}$$n (no. 223). Ba8Cu14Ge6P26 is the first representative of anionic clathrates whose framework is composed of three atom types of very different chemical natures: a transition metal, tetrel element, and pnicogen. Uniform distribution of the Cu, Ge, and P atoms over the framework sites and the absence of any superstructural or local ordering in Ba8Cu4Ge6P26 were confirmed by synchrotron X-ray diffraction, electron diffraction and high-angle annular dark field scanning transmission electron microscopy, and neutron and X-ray pair distribution function analyses. Characterization of the transport properties demonstrate that Ba8Cu14Ge6P26 is a p-type semiconductor with an intrinsically low thermal conductivity of 0.72 W m-1K-1 at 812 K. The thermoelectric figure of merit, ZT, for a slice of the Bridgman-grown crystal of Ba8Cu14Ge6P26 approaches 0.63 at 812 K due to a high power factor of 5.62 μW cm-1 K-2. The thermoelectric efficiency of Ba8Cu14Ge6P26 is on par with the best optimized p-type Ge-based clathrates and outperforms the majority of clathrates in the 700–850 K temperature region, including all tetrel-free clathrates. Ba8Cu14Ge6P26 expands clathrate chemistry by bridging conventional tetrel-based and tetrel-free clathrates. Advanced transport properties, in combination with earth-abundant framework elements and congruent melting make Ba8Cu14Ge6P26 a strong candidate as a novel and efficient thermoelectric material.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6]; ORCiD logo [1]
  1. Department of Chemistry, Iowa State University, Ames, USA, Department of Chemistry
  2. Laboratoire CRISMAT, ENSICAEN, CNRS, UMR 6508, F-14050 Caen
  3. Department of Chemistry, University of California, Davis, USA, Thermal Energy Conversion Research and Advancement Group
  4. Department of Chemistry, University of California, Davis, USA
  5. Department of Physics, University of California, Davis, USA
  6. Thermal Energy Conversion Research and Advancement Group, Jet Propulsion Laboratory, Pasadena, USA
Publication Date:
Research Org.:
Univ. of California, Davis, CA (United States); Univ., of Chicago, Chicago, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1409482
Alternate Identifier(s):
OSTI ID: 1506077
Grant/Contract Number:  
SC0008931; AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Chemical Science
Additional Journal Information:
Journal Name: Chemical Science Journal Volume: 8 Journal Issue: 12; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Wang, Jian, Lebedev, Oleg I., Lee, Kathleen, Dolyniuk, Juli-Anna, Klavins, Peter, Bux, Sabah, and Kovnir, Kirill. High-efficiency thermoelectric Ba 8 Cu 14 Ge 6 P 26 : bridging the gap between tetrel-based and tetrel-free clathrates. United Kingdom: N. p., 2017. Web. doi:10.1039/C7SC03482B.
Wang, Jian, Lebedev, Oleg I., Lee, Kathleen, Dolyniuk, Juli-Anna, Klavins, Peter, Bux, Sabah, & Kovnir, Kirill. High-efficiency thermoelectric Ba 8 Cu 14 Ge 6 P 26 : bridging the gap between tetrel-based and tetrel-free clathrates. United Kingdom. doi:10.1039/C7SC03482B.
Wang, Jian, Lebedev, Oleg I., Lee, Kathleen, Dolyniuk, Juli-Anna, Klavins, Peter, Bux, Sabah, and Kovnir, Kirill. Sun . "High-efficiency thermoelectric Ba 8 Cu 14 Ge 6 P 26 : bridging the gap between tetrel-based and tetrel-free clathrates". United Kingdom. doi:10.1039/C7SC03482B.
@article{osti_1409482,
title = {High-efficiency thermoelectric Ba 8 Cu 14 Ge 6 P 26 : bridging the gap between tetrel-based and tetrel-free clathrates},
author = {Wang, Jian and Lebedev, Oleg I. and Lee, Kathleen and Dolyniuk, Juli-Anna and Klavins, Peter and Bux, Sabah and Kovnir, Kirill},
abstractNote = {A new type-I clathrate, Ba8Cu14Ge6P26, was synthesized by solid-state methods as a polycrystalline powder and grown as a cm-sized single crystal via the vertical Bridgman method. Single-crystal and powder X-ray diffraction show that Ba8Cu14Ge6P26 crystallizes in the cubic space group Pm$\bar{3}$n (no. 223). Ba8Cu14Ge6P26 is the first representative of anionic clathrates whose framework is composed of three atom types of very different chemical natures: a transition metal, tetrel element, and pnicogen. Uniform distribution of the Cu, Ge, and P atoms over the framework sites and the absence of any superstructural or local ordering in Ba8Cu4Ge6P26 were confirmed by synchrotron X-ray diffraction, electron diffraction and high-angle annular dark field scanning transmission electron microscopy, and neutron and X-ray pair distribution function analyses. Characterization of the transport properties demonstrate that Ba8Cu14Ge6P26 is a p-type semiconductor with an intrinsically low thermal conductivity of 0.72 W m-1K-1 at 812 K. The thermoelectric figure of merit, ZT, for a slice of the Bridgman-grown crystal of Ba8Cu14Ge6P26 approaches 0.63 at 812 K due to a high power factor of 5.62 μW cm-1 K-2. The thermoelectric efficiency of Ba8Cu14Ge6P26 is on par with the best optimized p-type Ge-based clathrates and outperforms the majority of clathrates in the 700–850 K temperature region, including all tetrel-free clathrates. Ba8Cu14Ge6P26 expands clathrate chemistry by bridging conventional tetrel-based and tetrel-free clathrates. Advanced transport properties, in combination with earth-abundant framework elements and congruent melting make Ba8Cu14Ge6P26 a strong candidate as a novel and efficient thermoelectric material.},
doi = {10.1039/C7SC03482B},
journal = {Chemical Science},
number = 12,
volume = 8,
place = {United Kingdom},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1039/C7SC03482B

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Elusive β-Zn 8 Sb 7 : A New Zinc Antimonide Thermoelectric
journal, September 2015

  • Wang, Jian; Kovnir, Kirill
  • Journal of the American Chemical Society, Vol. 137, Issue 39
  • DOI: 10.1021/jacs.5b08214

Thermoelectric properties of Zn-doped Ca3AlSb3
journal, January 2012

  • Zeier, Wolfgang G.; Zevalkink, Alex; Schechtel, Eugen
  • Journal of Materials Chemistry, Vol. 22, Issue 19
  • DOI: 10.1039/c2jm31324c

Why are Clathrates Good Candidates for Thermoelectric Materials?
journal, February 2000

  • Iversen, Bo B.; Palmqvist, Anders E. C.; Cox, David E.
  • Journal of Solid State Chemistry, Vol. 149, Issue 2
  • DOI: 10.1006/jssc.1999.8534

Ca 3 AlSb 3 : an inexpensive, non-toxic thermoelectric material for waste heat recovery
journal, January 2011

  • Zevalkink, Alex; Toberer, Eric S.; Zeier, Wolfgang G.
  • Energy Environ. Sci., Vol. 4, Issue 2
  • DOI: 10.1039/C0EE00517G

Thermoelectric properties of Sr3GaSb3 – a chain-forming Zintl compound
journal, January 2012

  • Zevalkink, Alex; Zeier, Wolfgang G.; Pomrehn, Gregory
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22378c

Rationally Designing High-Performance Bulk Thermoelectric Materials
journal, August 2016


Twisted Kelvin Cells and Truncated Octahedral Cages in the Crystal Structures of Unconventional Clathrates, AM 2 P 4 (A = Sr, Ba; M = Cu, Ni)
journal, June 2015


Crystal Structure, Band Structure, and Physical Properties of Ba 8 Cu 6 - x Ge 40+ x (0 ≤ x ≤ 0.7)
journal, September 2006

  • Johnsen, Simon; Bentien, Anders; Madsen, Georg K. H.
  • Chemistry of Materials, Vol. 18, Issue 19
  • DOI: 10.1021/cm061195y

PDFFIT , a program for full profile structural refinement of the atomic pair distribution function
journal, June 1999


Ordering of Vacancies in Type-I Tin Clathrate:  Superstructure of Rb 8 Sn 442
journal, March 2005

  • Dubois, Franck; Fässler, Thomas F.
  • Journal of the American Chemical Society, Vol. 127, Issue 10
  • DOI: 10.1021/ja043500r

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Traversing the Metal-Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb 14 Mn 1− x Al x Sb 11
journal, September 2008

  • Toberer, Eric S.; Cox, Catherine A.; Brown, Shawna R.
  • Advanced Functional Materials, Vol. 18, Issue 18
  • DOI: 10.1002/adfm.200800298

Measurement of Seebeck coefficient using a light pulse
journal, May 1985

  • Wood, C.; Zoltan, D.; Stapfer, G.
  • Review of Scientific Instruments, Vol. 56, Issue 5
  • DOI: 10.1063/1.1138213

Thermoelectric properties of a clathrate compound Ba8Cu16P30
journal, April 2003

  • Huo, Dexuan; Sasakawa, Tetsuya; Muro, Yuji
  • Applied Physics Letters, Vol. 82, Issue 16
  • DOI: 10.1063/1.1568819

Semiconducting clathrates: synthesis, structure and properties
journal, September 2004


The effect of light rare earth element substitution in Yb 14 MnSb 11 on thermoelectric properties
journal, January 2015

  • Hu, Yufei; Bux, Sabah K.; Grebenkemper, Jason H.
  • Journal of Materials Chemistry C, Vol. 3, Issue 40
  • DOI: 10.1039/C5TC02326B

Band Engineering of Thermoelectric Materials
journal, October 2012


Effects of the order–disorder phase transition on the physical properties of A8Sn44□2 (A = Rb, Cs)
journal, January 2008

  • Kaltzoglou, Andreas; Fässler, Thomas; Christensen, Mogens
  • Journal of Materials Chemistry, Vol. 18, Issue 46
  • DOI: 10.1039/b810783a

On the Design of High-Efficiency Thermoelectric Clathrates through a Systematic Cross-Substitution of Framework Elements
journal, March 2010

  • Shi, Xun; Yang, Jiong; Bai, Shengqiang
  • Advanced Functional Materials, Vol. 20, Issue 5
  • DOI: 10.1002/adfm.200901817

Ba8Cu16P30 - eine neue tern�re Variante des Clathrat I-Strukturtyps
journal, February 1995

  • D�nner, J.; Mewis, A.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 621, Issue 2
  • DOI: 10.1002/zaac.19956210205

Thermoelectric Cooling and Power Generation
journal, July 1999


Clathrates of Group 14 with Alkali Metals: An Exploration
journal, August 2000

  • Bobev, Svilen; Sevov, Slavi C.
  • Journal of Solid State Chemistry, Vol. 153, Issue 1
  • DOI: 10.1006/jssc.2000.8755

Thermoelectric properties of p-type Ba8Ga16Ge30 type-I clathrate compounds prepared by the vertical Bridgman method
journal, October 2017


Cationic Clathrate I Si 46- x P x Te y (6.6(1) ≤ y ≤ 7.5(1), x ≤ 2 y ): Crystal Structure, Homogeneity Range, and Physical Properties
journal, April 2009

  • Zaikina, J. V.; Kovnir, K. A.; Burkhardt, U.
  • Inorganic Chemistry, Vol. 48, Issue 8
  • DOI: 10.1021/ic8023887

Thermal stability and thermoelectric properties of p-type Ba8Ga16Ge30 clathrates
journal, October 2009

  • Cederkrantz, D.; Saramat, A.; Snyder, G. J.
  • Journal of Applied Physics, Vol. 106, Issue 7
  • DOI: 10.1063/1.3236635

Transport properties of polycrystalline type-I Sn clathrates
journal, April 2002


Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
journal, April 2014

  • Zhao, Li-Dong; Lo, Shih-Han; Zhang, Yongsheng
  • Nature, Vol. 508, Issue 7496, p. 373-377
  • DOI: 10.1038/nature13184

Better thermoelectrics through glass-like crystals
journal, November 2015

  • Beekman, Matt; Morelli, Donald T.; Nolas, George S.
  • Nature Materials, Vol. 14, Issue 12
  • DOI: 10.1038/nmat4461

Breaking the Tetra-Coordinated Framework Rule: New Clathrate Ba 8 M 24 P 28+ δ ( M =Cu/Zn)
journal, January 2017

  • Dolyniuk, Juli-Anna; Zaikina, Julia V.; Kaseman, Derrick C.
  • Angewandte Chemie International Edition, Vol. 56, Issue 9
  • DOI: 10.1002/anie.201611510

Growth and thermoelectric properties of Ba8Ga16Ge30 clathrate crystals
journal, August 2009


Yb 14 MnSb 11 :  New High Efficiency Thermoelectric Material for Power Generation
journal, April 2006

  • Brown, Shawna R.; Kauzlarich, Susan M.; Gascoin, Franck
  • Chemistry of Materials, Vol. 18, Issue 7
  • DOI: 10.1021/cm060261t

Structural Characterization and Thermal Conductivity of Type-I Tin Clathrates
journal, July 2000

  • Nolas, G. S.; Chakoumakos, B. C.; Mahieu, B.
  • Chemistry of Materials, Vol. 12, Issue 7
  • DOI: 10.1021/cm990686y

Structure, Heat Capacity, and High-Temperature Thermal Properties of Yb 14 Mn 1− x Al x Sb 11
journal, April 2009

  • Cox, Catherine A.; Toberer, Eric S.; Levchenko, Andrey A.
  • Chemistry of Materials, Vol. 21, Issue 7
  • DOI: 10.1021/cm803252r

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Controlling superstructural ordering in the clathrate-I Ba 8 M 16 P 30 (M = Cu, Zn) through the formation of metal–metal bonds
journal, January 2017

  • Dolyniuk, J.; Whitfield, P. S.; Lee, K.
  • Chemical Science, Vol. 8, Issue 5
  • DOI: 10.1039/C7SC00354D

Siting of Antimony Dopants and Gallium in Ba 8 Ga 16 Ge 30 Clathrates Grown from Gallium Flux
journal, July 2002

  • Latturner, S. E.; Bryan, J. D.; Blake, N.
  • Inorganic Chemistry, Vol. 41, Issue 15
  • DOI: 10.1021/ic011286r

Characterization of Lorenz number with Seebeck coefficient measurement
journal, April 2015

  • Kim, Hyun-Sik; Gibbs, Zachary M.; Tang, Yinglu
  • APL Materials, Vol. 3, Issue 4
  • DOI: 10.1063/1.4908244

Solid-Solutioned Homojunction Nanoplates with Disordered Lattice: A Promising Approach toward “Phonon Glass Electron Crystal” Thermoelectric Materials
journal, April 2012

  • Xiao, Chong; Xu, Jie; Cao, Boxiao
  • Journal of the American Chemical Society, Vol. 134, Issue 18
  • DOI: 10.1021/ja3020204

Introducing a Magnetic Guest to a Tetrel-Free Clathrate: Synthesis, Structure, and Properties of Eu x Ba 8– x Cu 16 P 30 (0 ≤ x ≤ 1.5)
journal, October 2011

  • Kovnir, Kirill; Stockert, Ulrike; Budnyk, Sergij
  • Inorganic Chemistry, Vol. 50, Issue 20
  • DOI: 10.1021/ic201474h

New and Old Concepts in Thermoelectric Materials
journal, November 2009

  • Sootsman, Joseph R.; Chung, Duck Young; Kanatzidis, Mercouri G.
  • Angewandte Chemie International Edition, Vol. 48, Issue 46, p. 8616-8639
  • DOI: 10.1002/anie.200900598

Measurement of the electrical resistivity and Hall coefficient at high temperatures
journal, December 2012

  • Borup, Kasper A.; Toberer, Eric S.; Zoltan, Leslie D.
  • Review of Scientific Instruments, Vol. 83, Issue 12
  • DOI: 10.1063/1.4770124

Ca 1– x RE x Ag 1– y Sb (RE = La, Ce, Pr, Nd, Sm; 0 ≤ x ≤1; 0 ≤ y ≤1): Interesting Structural Transformation and Enhanced High-Temperature Thermoelectric Performance
journal, July 2013

  • Wang, Jian; Liu, Xiao-Cun; Xia, Sheng-Qing
  • Journal of the American Chemical Society, Vol. 135, Issue 32
  • DOI: 10.1021/ja403653m

Thermoelectric clathrates of type I
journal, January 2010

  • Christensen, Mogens; Johnsen, Simon; Iversen, Bo Brummerstedt
  • Dalton Trans., Vol. 39, Issue 4
  • DOI: 10.1039/B916400F

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


High temperature thermoelectric transport properties of p-type Ba8Ga16AlxGe30−x type-I clathrates with high performance
journal, April 2008

  • Deng, Shukang; Tang, Xinfeng; Li, Peng
  • Journal of Applied Physics, Vol. 103, Issue 7
  • DOI: 10.1063/1.2902504

The First Silicon-Based Cationic Clathrate III with High Thermal Stability: Si172−xPxTey (x=2y, y>20)
journal, June 2008

  • Zaikina, Julia V.; Kovnir, Kirill A.; Haarmann, Frank
  • Chemistry - A European Journal, Vol. 14, Issue 18
  • DOI: 10.1002/chem.200800453

Thermoelectrics Run Hot and Cold
journal, May 1996


Clathrate Ba 8 Au 16 P 30 : The “Gold Standard” for Lattice Thermal Conductivity
journal, August 2013

  • Fulmer, James; Lebedev, Oleg I.; Roddatis, Vladimir V.
  • Journal of the American Chemical Society, Vol. 135, Issue 33
  • DOI: 10.1021/ja4052679

Clathrate thermoelectrics
journal, October 2016

  • Dolyniuk, Juli-Anna; Owens-Baird, Bryan; Wang, Jian
  • Materials Science and Engineering: R: Reports, Vol. 108
  • DOI: 10.1016/j.mser.2016.08.001

The Antimony-Based Type I Clathrate Compounds Cs8Cd18Sb28 and Cs8Zn18Sb28
journal, June 2009

  • Liu, Yi; Wu, Li-Ming; Li, Long-Hua
  • Angewandte Chemie International Edition, Vol. 48, Issue 29
  • DOI: 10.1002/anie.200806158

Ba8Ge43 revisited: a 2a?�2a?�2a? Superstructure of the Clathrate-I Type with Full Vacancy Ordering
journal, November 2004

  • Carrillo-Cabrera, Wilder; Budnyk, Serhij; Prots, Yurii
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 630, Issue 13-14
  • DOI: 10.1002/zaac.200400268

Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory
journal, June 2014

  • Takabatake, Toshiro; Suekuni, Koichiro; Nakayama, Tsuneyoshi
  • Reviews of Modern Physics, Vol. 86, Issue 2
  • DOI: 10.1103/RevModPhys.86.669

New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides
journal, February 2010


Synthesis, Structural Characterization, and Physical Properties of the Type-I Clathrates A 8 Zn 18 As 28 ( A = K, Rb, Cs) and Cs 8 Cd 18 As 28
journal, September 2012

  • He, Hua; Zevalkink, Alex; Gibbs, Zachary M.
  • Chemistry of Materials, Vol. 24, Issue 18
  • DOI: 10.1021/cm3020226

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


High thermoelectric efficiency in lanthanum doped Yb14MnSb11
journal, August 2008

  • Toberer, Eric S.; Brown, Shawna R.; Ikeda, Teruyuki
  • Applied Physics Letters, Vol. 93, Issue 6
  • DOI: 10.1063/1.2970089

    Works referencing / citing this record:

    Phonon glass behavior beyond traditional cage structures: synthesis, crystal and electronic structure, and properties of KMg 4 Sb 3
    journal, January 2018

    • Wang, Jian; Wang, Lin-Lin; Kovnir, Kirill
    • Journal of Materials Chemistry A, Vol. 6, Issue 11
    • DOI: 10.1039/c8ta00553b

    State-of-the-Art Reviews and Analyses of Emerging Research Findings and Achievements of Thermoelectric Materials over the Past Years
    journal, December 2018

    • Selvan, Krishna Veni; Hasan, Md Nazibul; Mohamed Ali, Mohamed Sultan
    • Journal of Electronic Materials, Vol. 48, Issue 2
    • DOI: 10.1007/s11664-018-06838-4

    High thermoelectric performance in complex phosphides enabled by stereochemically active lone pair electrons
    journal, January 2018

    • Shen, Xingchen; Xia, Yi; Wang, Guiwen
    • Journal of Materials Chemistry A, Vol. 6, Issue 48
    • DOI: 10.1039/c8ta08448c

    A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization
    journal, June 2018

    • Zevalkink, Alex; Smiadak, David M.; Blackburn, Jeff L.
    • Applied Physics Reviews, Vol. 5, Issue 2
    • DOI: 10.1063/1.5021094

    Synthesis, structure, and transport properties of Ba 8 Cu 16 –  x Au x P 30 clathrate solid solution
    journal, February 2020

    • Wang, Jian; Voyles, Jackson; Grzybowski, Scott
    • Journal of Applied Physics, Vol. 127, Issue 5
    • DOI: 10.1063/1.5134080

    Synthesis and Characterization of K and Eu Binary Phosphides
    journal, January 2019

    • Dolyniuk, Juli-Anna; Mark, Justin; Lee, Shannon
    • Materials, Vol. 12, Issue 2
    • DOI: 10.3390/ma12020251

    Raman Characterization on Two-Dimensional Materials-Based Thermoelectricity
    journal, December 2018