skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Facet-Specific Ligand Interactions on Ternary AgSbS 2 Colloidal Quantum Dots

Abstract

Silver dimetal chalcogenide (Ag-V-VI 2) ternary quantum dots (QDs) are emerging lead-free materials for optoelectronic devices due to their NIR band gaps, large absorption coefficients, and superior electronic properties. However, thin film-based devices of the ternary QDs still lag behind due to the lack of understanding of the surface chemistry, compared to that of lead chalcogenide QDs even with the same crystal structure. Here in this paper, the surface ligand interactions of AgSbS 2 QDs, synthesized with 1-dodecanethiol used as a stabilizer, are studied. For nonpolar (1 0 0) surfaces, it is suggested that the thiolate ligands are associated with the crystal lattices, thus preventing surface oxidation by protecting sulfur after air-exposure, as confirmed through optical and surface chemical analysis. Otherwise, silver rich (1 1 1) surfaces are passivated by thiolate ligands, allowing ligand exchange processes for the conductive films. This in-depth investigation of the surface chemistry of ternary QDs will prompt the performance enhancement of their optoelectronic devices.

Authors:
ORCiD logo [1];  [2];  [3];  [1];  [4];  [3]; ORCiD logo [4]
  1. Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Nano-Convergence Systems Research Division
  2. Ajou Univ., Suwon (Republic of Korea). Dept. of Molecular Science and Technology
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States). Chemical and Materials Sciences Center
  4. Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Nano-Convergence Systems Research Division; Korea Univ. of Science and Technology (UST), Daejeon (Republic of Korea). Dept. of Nanomechatronics
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); Korea Institute for Advancement of Technology (KIAT)
OSTI Identifier:
1409306
Report Number(s):
NREL/JA-5900-70532
Journal ID: ISSN 0947-6539
Grant/Contract Number:  
AC36-08GO28308; NRF-2016R1A2B3014182; 2014R1A5A1009799
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry - A European Journal
Additional Journal Information:
Journal Volume: 23; Journal Issue: 66; Journal ID: ISSN 0947-6539
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY; AGSBS2; I-V-VI2; QUANTUM DOTS; SURFACE CHEMISTRY; TERNARY

Citation Formats

Choi, Hyekyoung, Kim, Sungwoo, Luther, Joseph M., Kim, Sang-Wook, Shin, Dongwoon, Beard, Matthew C., and Jeong, Sohee. Facet-Specific Ligand Interactions on Ternary AgSbS2 Colloidal Quantum Dots. United States: N. p., 2017. Web. doi:10.1002/chem.201703681.
Choi, Hyekyoung, Kim, Sungwoo, Luther, Joseph M., Kim, Sang-Wook, Shin, Dongwoon, Beard, Matthew C., & Jeong, Sohee. Facet-Specific Ligand Interactions on Ternary AgSbS2 Colloidal Quantum Dots. United States. doi:10.1002/chem.201703681.
Choi, Hyekyoung, Kim, Sungwoo, Luther, Joseph M., Kim, Sang-Wook, Shin, Dongwoon, Beard, Matthew C., and Jeong, Sohee. Tue . "Facet-Specific Ligand Interactions on Ternary AgSbS2 Colloidal Quantum Dots". United States. doi:10.1002/chem.201703681. https://www.osti.gov/servlets/purl/1409306.
@article{osti_1409306,
title = {Facet-Specific Ligand Interactions on Ternary AgSbS2 Colloidal Quantum Dots},
author = {Choi, Hyekyoung and Kim, Sungwoo and Luther, Joseph M. and Kim, Sang-Wook and Shin, Dongwoon and Beard, Matthew C. and Jeong, Sohee},
abstractNote = {Silver dimetal chalcogenide (Ag-V-VI2) ternary quantum dots (QDs) are emerging lead-free materials for optoelectronic devices due to their NIR band gaps, large absorption coefficients, and superior electronic properties. However, thin film-based devices of the ternary QDs still lag behind due to the lack of understanding of the surface chemistry, compared to that of lead chalcogenide QDs even with the same crystal structure. Here in this paper, the surface ligand interactions of AgSbS2 QDs, synthesized with 1-dodecanethiol used as a stabilizer, are studied. For nonpolar (1 0 0) surfaces, it is suggested that the thiolate ligands are associated with the crystal lattices, thus preventing surface oxidation by protecting sulfur after air-exposure, as confirmed through optical and surface chemical analysis. Otherwise, silver rich (1 1 1) surfaces are passivated by thiolate ligands, allowing ligand exchange processes for the conductive films. This in-depth investigation of the surface chemistry of ternary QDs will prompt the performance enhancement of their optoelectronic devices.},
doi = {10.1002/chem.201703681},
journal = {Chemistry - A European Journal},
number = 66,
volume = 23,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids
journal, November 2016

  • Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4800

Solid-state colloidal CuInS 2 quantum dot solar cells enabled by bulk heterojunctions
journal, January 2016

  • So, D.; Pradhan, S.; Konstantatos, G.
  • Nanoscale, Vol. 8, Issue 37
  • DOI: 10.1039/C6NR05563J

Colloidal Quantum Dot Solar Cells
journal, June 2015


Crystal-Bound vs Surface-Bound Thiols on Nanocrystals
journal, September 2014

  • Turo, Michael J.; Macdonald, Janet E.
  • ACS Nano, Vol. 8, Issue 10, p. 10205-10213
  • DOI: 10.1021/nn5032164

Vitrification of and optical and photoelectrical properties of AgAsS2, AgSbS2, and AgBiS2
journal, March 1976

  • Golovach, I. I.; Gerasimenko, V. S.; Slivka, V. Yu.
  • Soviet Physics Journal, Vol. 19, Issue 3
  • DOI: 10.1007/BF00945676

Colloidal AgSbSe 2 nanocrystals: surface analysis, electronic doping and processing into thermoelectric nanomaterials
journal, January 2016

  • Liu, Yu; Cadavid, Doris; Ibáñez, Maria
  • Journal of Materials Chemistry C, Vol. 4, Issue 21
  • DOI: 10.1039/C6TC00893C

Quantum dot surface engineering: Toward inert fluorophores with compact size and bright, stable emission
journal, August 2016


Structures and Mechanisms in the Growth of Hybrid Ru–Cu 2 S Nanoparticles: From Cages to Nanonets
journal, May 2012

  • Vinokurov, Kathy; Macdonald, Janet E.; Banin, Uri
  • Chemistry of Materials, Vol. 24, Issue 10
  • DOI: 10.1021/cm3003589

Air-Stable PbSe Nanocrystals Passivated by Phosphonic Acids
journal, January 2016

  • Woo, Ju Young; Lee, Sooho; Lee, Seokwon
  • Journal of the American Chemical Society, Vol. 138, Issue 3
  • DOI: 10.1021/jacs.5b10273

Halide-Amine Co-Passivated Indium Phosphide Colloidal Quantum Dots in Tetrahedral Shape
journal, February 2016

  • Kim, Kyungnam; Yoo, Dongsuk; Choi, Hyekyoung
  • Angewandte Chemie International Edition, Vol. 55, Issue 11
  • DOI: 10.1002/anie.201600289

Control of PbSe Quantum Dot Surface Chemistry and Photophysics Using an Alkylselenide Ligand
journal, May 2012

  • Hughes, Barbara K.; Ruddy, Daniel A.; Blackburn, Jeffrey L.
  • ACS Nano, Vol. 6, Issue 6
  • DOI: 10.1021/nn301405j

Quantum-dot-in-perovskite solids
journal, July 2015

  • Ning, Zhijun; Gong, Xiwen; Comin, Riccardo
  • Nature, Vol. 523, Issue 7560
  • DOI: 10.1038/nature14563

Highly Luminescent CuInS 2 /ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging
journal, June 2009

  • Li, Liang; Daou, T. Jean; Texier, Isabelle
  • Chemistry of Materials, Vol. 21, Issue 12
  • DOI: 10.1021/cm900103b

Simultaneous phase and size control in the synthesis of Cu 2 SnS 3 and Cu 2 ZnSnS 4 nanocrystals
journal, January 2014

  • Park, Youngrong; Jin, Ho; Park, Joonhyuck
  • CrystEngComm, Vol. 16, Issue 37
  • DOI: 10.1039/C4CE01079E

Size-Dependent Photovoltaic Performance of CuInS 2 Quantum Dot-Sensitized Solar Cells
journal, November 2014

  • Jara, Danilo H.; Yoon, Seog Joon; Stamplecoskie, Kevin G.
  • Chemistry of Materials, Vol. 26, Issue 24
  • DOI: 10.1021/cm5040886

Photoconductive thin films of AgSbS 2 with cubic crystalline structure in solar cells : Photoconductive thin films of AgSbS
journal, August 2015

  • Capistrán-Martínez, Jesús; Nair, P. K.
  • physica status solidi (a), Vol. 212, Issue 12
  • DOI: 10.1002/pssa.201532496

Surface Chemistry of CuInS 2 Colloidal Nanocrystals, Tight Binding of L-Type Ligands
journal, October 2014

  • Dierick, Ruben; Van den Broeck, Freya; De Nolf, Kim
  • Chemistry of Materials, Vol. 26, Issue 20
  • DOI: 10.1021/cm502687p

High-Quality CuInS 2 /ZnS Quantum Dots for In vitro and In vivo Bioimaging
journal, July 2012

  • Deng, Dawei; Chen, Yuqi; Cao, Jie
  • Chemistry of Materials, Vol. 24, Issue 15
  • DOI: 10.1021/cm3015594

Optoelectronic Properties of CuInS 2 Nanocrystals and Their Origin
journal, January 2016


Formation of High-Quality I−III−VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors
journal, April 2009

  • Xie, Renguo; Rutherford, Michael; Peng, Xiaogang
  • Journal of the American Chemical Society, Vol. 131, Issue 15
  • DOI: 10.1021/ja9005767

Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands
journal, June 2014

  • Zhang, Hao; Jang, Jaeyoung; Liu, Wenyong
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502470v

Atomic models for anionic ligand passivation of cation-rich surfaces of IV–VI, II–VI, and III–V colloidal quantum dots
journal, January 2017

  • Ko, Jae-Hyeon; Yoo, Dongsuk; Kim, Yong-Hyun
  • Chemical Communications, Vol. 53, Issue 2
  • DOI: 10.1039/C6CC07933D

Improved performance and stability in quantum dot solar cells through band alignment engineering
journal, May 2014

  • Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir
  • Nature Materials, Vol. 13, Issue 8, p. 796-801
  • DOI: 10.1038/nmat3984

Optical Properties and Electronic Structure of Amorphous Germanium
journal, January 1966


Hard and Soft Acids and Bases
journal, November 1963

  • Pearson, Ralph G.
  • Journal of the American Chemical Society, Vol. 85, Issue 22
  • DOI: 10.1021/ja00905a001

Halide-Amine Co-Passivated Indium Phosphide Colloidal Quantum Dots in Tetrahedral Shape
journal, February 2016

  • Kim, Kyungnam; Yoo, Dongsuk; Choi, Hyekyoung
  • Angewandte Chemie, Vol. 128, Issue 11
  • DOI: 10.1002/ange.201600289

Ultrastable PbSe Nanocrystal Quantum Dots via in Situ Formation of Atomically Thin Halide Adlayers on PbSe(100)
journal, June 2014

  • Woo, Ju Young; Ko, Jae-Hyeon; Song, Jung Hoon
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja503957r

Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%
journal, March 2016

  • Du, Jun; Du, Zhonglin; Hu, Jin-Song
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b00615

Band gaps and spin-orbit splitting of ordered and disordered Al x Ga 1 x As and Ga As x Sb 1 x alloys
journal, February 1989


Air-Stable Near-Infrared AgInSe 2 Nanocrystals
journal, March 2014

  • Langevin, Marc-Antoine; Ritcey, Anna M.; Allen, Claudine Nì
  • ACS Nano, Vol. 8, Issue 4
  • DOI: 10.1021/nn406439w

Steric-Hindrance-Driven Shape Transition in PbS Quantum Dots: Understanding Size-Dependent Stability
journal, March 2013

  • Choi, Hyekyoung; Ko, Jae-Hyeon; Kim, Yong-Hyun
  • Journal of the American Chemical Society, Vol. 135, Issue 14
  • DOI: 10.1021/ja400948t

Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals
journal, April 2014

  • Dirin, Dmitry N.; Dreyfuss, Sébastien; Bodnarchuk, Maryna I.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja5006288

Increased open-circuit voltage in a Schottky device using PbS quantum dots with extreme confinement
journal, May 2013

  • Choi, Hyekyoung; Kwan Kim, Jun; Hoon Song, Jung
  • Applied Physics Letters, Vol. 102, Issue 19
  • DOI: 10.1063/1.4804614

Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals
journal, June 2016

  • Bernechea, María; Miller, Nichole Cates; Xercavins, Guillem
  • Nature Photonics, Vol. 10, Issue 8
  • DOI: 10.1038/nphoton.2016.108

Monodisperse AgSbS 2 Nanocrystals: Size-Control Strategy, Large-Scale Synthesis, and Photoelectrochemistry
journal, June 2015

  • Zhou, Bin; Li, Mingrun; Wu, Yihui
  • Chemistry - A European Journal, Vol. 21, Issue 31
  • DOI: 10.1002/chem.201501000

The Chemical Environments of Oleate Species within Samples of Oleate-Coated PbS Quantum Dots
journal, July 2013

  • Cass, Laura C.; Malicki, Michał; Weiss, Emily A.
  • Analytical Chemistry, Vol. 85, Issue 14
  • DOI: 10.1021/ac401623a

CuInSe 2 and CuInSe 2 –ZnS based high efficiency “green” quantum dot sensitized solar cells
journal, January 2015

  • Li, Wenjie; Pan, Zhenxiao; Zhong, Xinhua
  • Journal of Materials Chemistry A, Vol. 3, Issue 4
  • DOI: 10.1039/C4TA05134C

Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells
journal, April 2017


Evidence for spatially indirect recombination in Ga 0.52 In 0.48 P
journal, September 1991

  • DeLong, M. C.; Ohlsen, W. D.; Viohl, I.
  • Journal of Applied Physics, Vol. 70, Issue 5
  • DOI: 10.1063/1.349364

Synthesis and Characterization of InP, GaP, and GaInP2 Quantum Dots
journal, May 1995

  • Micic, O. I.; Sprague, J. R.; Curtis, C. J.
  • The Journal of Physical Chemistry, Vol. 99, Issue 19
  • DOI: 10.1021/j100019a063