skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron Shock Ignition of Inertial Fusion Targets

Abstract

Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~1016 W/cm2.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Univ. of Rochester, Rochester, NY (United States)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1409067
Alternate Identifier(s):
OSTI ID: 1407826
Report Number(s):
2016-119, 1362
Journal ID: ISSN 0031-9007; PRLTAO; 2016-119, 2319, 1362; TRN: US1702958
Grant/Contract Number:  
NA0001944; FC02-04ER54789; SC0012316
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 119; Journal Issue: 19; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Shang, W. L., Betti, R., Hu, S. X., Woo, K., Hao, L., Ren, C., Christopherson, A. R., Bose, A., and Theobald, W. Electron Shock Ignition of Inertial Fusion Targets. United States: N. p., 2017. Web. doi:10.1103/PhysRevLett.119.195001.
Shang, W. L., Betti, R., Hu, S. X., Woo, K., Hao, L., Ren, C., Christopherson, A. R., Bose, A., & Theobald, W. Electron Shock Ignition of Inertial Fusion Targets. United States. doi:10.1103/PhysRevLett.119.195001.
Shang, W. L., Betti, R., Hu, S. X., Woo, K., Hao, L., Ren, C., Christopherson, A. R., Bose, A., and Theobald, W. Tue . "Electron Shock Ignition of Inertial Fusion Targets". United States. doi:10.1103/PhysRevLett.119.195001. https://www.osti.gov/servlets/purl/1409067.
@article{osti_1409067,
title = {Electron Shock Ignition of Inertial Fusion Targets},
author = {Shang, W. L. and Betti, R. and Hu, S. X. and Woo, K. and Hao, L. and Ren, C. and Christopherson, A. R. and Bose, A. and Theobald, W.},
abstractNote = {Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~1016 W/cm2.},
doi = {10.1103/PhysRevLett.119.195001},
journal = {Physical Review Letters},
number = 19,
volume = 119,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility
journal, July 2009


Intermittent laser-plasma interactions and hot electron generation in shock ignition
journal, June 2014

  • Yan, R.; Li, J.; Ren, C.
  • Physics of Plasmas, Vol. 21, Issue 6
  • DOI: 10.1063/1.4882682

Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability
journal, July 2015

  • Bose, A.; Woo, K. M.; Nora, R.
  • Physics of Plasmas, Vol. 22, Issue 7
  • DOI: 10.1063/1.4923438

Physics issues for shock ignition
journal, April 2014


Shock ignition of thermonuclear fuel: principles and modelling
journal, April 2014


Dense plasma heating and shock wave generation by a beam of fast electrons
journal, October 2015

  • Llor Aisa, E.; Ribeyre, X.; Gus'kov, S.
  • Physics of Plasmas, Vol. 22, Issue 10
  • DOI: 10.1063/1.4933119

Shock Ignition of Thermonuclear Fuel with High Areal Density
journal, April 2007


Initial experiments on the shock-ignition inertial confinement fusion concept
journal, May 2008

  • Theobald, W.; Betti, R.; Stoeckl, C.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2885197

Demonstration of the Highest Deuterium-Tritium Areal Density Using Multiple-Picket Cryogenic Designs on OMEGA
journal, April 2010


Gigabar Spherical Shock Generation on the OMEGA Laser
journal, January 2015


The Physics of Inertial Fusion
book, January 2004


High-gain shock ignition of direct-drive ICF targets for the Laser Mégajoule
journal, April 2010


Spherical strong-shock generation for shock-ignition inertial fusiona)
journal, May 2015

  • Theobald, W.; Nora, R.; Seka, W.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920956

Particle-in-cell simulations of laser–plasma interaction for the shock ignition scenario
journal, April 2010


Generalized Measurable Ignition Criterion for Inertial Confinement Fusion
journal, April 2010


Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition
journal, December 2012

  • Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.
  • Physics of Plasmas, Vol. 19, Issue 12
  • DOI: 10.1063/1.4771593

Penetration and energy-loss theory of electrons in solid targets
journal, January 1972


Shock ignition target design for inertial fusion energy
journal, April 2010

  • Schmitt, Andrew J.; Bates, Jason W.; Obenschain, Steven P.
  • Physics of Plasmas, Vol. 17, Issue 4
  • DOI: 10.1063/1.3385443

Ablation Pressure Driven by an Energetic Electron Beam in a Dense Plasma
journal, December 2012


Core conditions for alpha heating attained in direct-drive inertial confinement fusion
journal, July 2016


Analysis of a direct-drive ignition capsule designed for the National Ignition Facility
journal, May 2001

  • McKenty, P. W.; Goncharov, V. N.; Town, R. P. J.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1350571

Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
journal, June 2015


Dense plasma heating and Gbar shock formation by a high intensity flux of energetic electrons
journal, June 2013

  • Ribeyre, X.; Gus'kov, S.; Feugeas, J. -L.
  • Physics of Plasmas, Vol. 20, Issue 6
  • DOI: 10.1063/1.4811473

Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions
journal, July 2016

  • Colaïtis, A.; Ribeyre, X.; Le Bel, E.
  • Physics of Plasmas, Vol. 23, Issue 7
  • DOI: 10.1063/1.4958808

Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments
journal, October 1987


Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets
journal, January 2008

  • Solodov, A. A.; Betti, R.
  • Physics of Plasmas, Vol. 15, Issue 4
  • DOI: 10.1063/1.2903890

Energy and wavelength scaling of shock-ignited inertial fusion targets
journal, April 2013


A polar-drive shock-ignition design for the National Ignition Facility
journal, May 2013

  • Anderson, K. S.; Betti, R.; McKenty, P. W.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4804635

One-dimensional planar hydrodynamic theory of shock ignition
journal, August 2011


Computational Science — ICCS 2002: International Conference Amsterdam, The Netherlands, April 21–24, 2002 Proceedings, Part III
book, January 2002

  • Goos, Gerhard; Hartmanis, Juris; van Leeuwen, Jan
  • Lecture Notes in Computer Science
  • DOI: 10.1007/3-540-47789-6

Shock ignition: an alternative scheme for HiPER
journal, December 2008


Analytic criteria for shock ignition of fusion reactions in a central hot spot
journal, October 2011

  • Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.
  • Physics of Plasmas, Vol. 18, Issue 10
  • DOI: 10.1063/1.3646743

Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA
journal, October 2010

  • Hu, S. X.; Goncharov, V. N.; Radha, P. B.
  • Physics of Plasmas, Vol. 17, Issue 10
  • DOI: 10.1063/1.3491467

Deleterious effects of nonthermal electrons in shock ignition concept
journal, March 2014


Multiple Scattering in an Infinite Medium
journal, June 1950


Optimal conditions for shock ignition of scaled cryogenic deuterium–tritium targets
journal, February 2013

  • Lafon, M.; Ribeyre, X.; Schurtz, G.
  • Physics of Plasmas, Vol. 20, Issue 2
  • DOI: 10.1063/1.4792265

    Works referencing / citing this record:

    Study of laser produced plasma in a longitudinal magnetic field
    journal, June 2019

    • Ivanov, V. V.; Maximov, A. V.; Betti, R.
    • Physics of Plasmas, Vol. 26, Issue 6
    • DOI: 10.1063/1.5091702

    Exploring the crossover between high-energy-density plasma and ultracold neutral plasma physics
    journal, October 2019

    • Bergeson, Scott D.; Baalrud, Scott D.; Ellison, C. Leland
    • Physics of Plasmas, Vol. 26, Issue 10
    • DOI: 10.1063/1.5119144

    Laser-driven strong shocks with infrared lasers at intensity of 10 16 W/cm 2
    journal, November 2019

    • Antonelli, L.; Trela, J.; Barbato, F.
    • Physics of Plasmas, Vol. 26, Issue 11
    • DOI: 10.1063/1.5119697

    Ion friction at small values of the Coulomb logarithm
    journal, May 2019


    Hydrodynamic studies of high gain shock ignition targets: effect of low- to intermediate-mode asymmetries
    journal, November 2019

    • Atzeni, Stefano; Schiavi, Angelo; Antonelli, Luca
    • The European Physical Journal D, Vol. 73, Issue 11
    • DOI: 10.1140/epjd/e2019-100317-5