skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First beryllium capsule implosions on the National Ignition Facility

Abstract

The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. Furthermore, these results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data,more » together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [2];  [2];  [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2];  [2];  [2];  [2];  [2];  [2] more »; ORCiD logo [2];  [2]; ORCiD logo [2];  [2];  [2]; ORCiD logo [2];  [2]; ORCiD logo [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [3];  [3]; ORCiD logo [3];  [3];  [3];  [4] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. General Atomics, San Diego, CA (United States)
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1408832
Alternate Identifier(s):
OSTI ID: 1252335; OSTI ID: 1366913
Report Number(s):
LA-UR-15-29483; LLNL-JRNL-702977
Journal ID: ISSN 1070-664X; TRN: US1703074
Grant/Contract Number:  
AC52-06NA25396; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Kline, J. L., Yi, S. A., Simakov, A. N., Olson, R. E., Wilson, D. C., Kyrala, G. A., Perry, T. S., Batha, S. H., Zylstra, A. B., Dewald, E. L., Tommasini, R., Ralph, J. E., Strozzi, D. J., MacPhee, A. G., Callahan, D. A., Hinkel, D. E., Hurricane, O. A., Milovich, J. L., Rygg, J. R., Khan, S. F., Haan, S. W., Celliers, P. M., Clark, D. S., Hammel, B. A., Kozioziemski, B., Schneider, M. B., Marinak, M. M., Rinderknecht, H. G., Robey, H. F., Salmonson, J. D., Patel, P. K., Ma, T., Edwards, M. J., Stadermann, M., Baxamusa, S., Alford, C., Wang, M., Nikroo, A., Rice, N., Hoover, D., Youngblood, K. P., Xu, H., Huang, H., and Sio, H. First beryllium capsule implosions on the National Ignition Facility. United States: N. p., 2016. Web. doi:10.1063/1.4948277.
Kline, J. L., Yi, S. A., Simakov, A. N., Olson, R. E., Wilson, D. C., Kyrala, G. A., Perry, T. S., Batha, S. H., Zylstra, A. B., Dewald, E. L., Tommasini, R., Ralph, J. E., Strozzi, D. J., MacPhee, A. G., Callahan, D. A., Hinkel, D. E., Hurricane, O. A., Milovich, J. L., Rygg, J. R., Khan, S. F., Haan, S. W., Celliers, P. M., Clark, D. S., Hammel, B. A., Kozioziemski, B., Schneider, M. B., Marinak, M. M., Rinderknecht, H. G., Robey, H. F., Salmonson, J. D., Patel, P. K., Ma, T., Edwards, M. J., Stadermann, M., Baxamusa, S., Alford, C., Wang, M., Nikroo, A., Rice, N., Hoover, D., Youngblood, K. P., Xu, H., Huang, H., & Sio, H. First beryllium capsule implosions on the National Ignition Facility. United States. doi:10.1063/1.4948277.
Kline, J. L., Yi, S. A., Simakov, A. N., Olson, R. E., Wilson, D. C., Kyrala, G. A., Perry, T. S., Batha, S. H., Zylstra, A. B., Dewald, E. L., Tommasini, R., Ralph, J. E., Strozzi, D. J., MacPhee, A. G., Callahan, D. A., Hinkel, D. E., Hurricane, O. A., Milovich, J. L., Rygg, J. R., Khan, S. F., Haan, S. W., Celliers, P. M., Clark, D. S., Hammel, B. A., Kozioziemski, B., Schneider, M. B., Marinak, M. M., Rinderknecht, H. G., Robey, H. F., Salmonson, J. D., Patel, P. K., Ma, T., Edwards, M. J., Stadermann, M., Baxamusa, S., Alford, C., Wang, M., Nikroo, A., Rice, N., Hoover, D., Youngblood, K. P., Xu, H., Huang, H., and Sio, H. Tue . "First beryllium capsule implosions on the National Ignition Facility". United States. doi:10.1063/1.4948277. https://www.osti.gov/servlets/purl/1408832.
@article{osti_1408832,
title = {First beryllium capsule implosions on the National Ignition Facility},
author = {Kline, J. L. and Yi, S. A. and Simakov, A. N. and Olson, R. E. and Wilson, D. C. and Kyrala, G. A. and Perry, T. S. and Batha, S. H. and Zylstra, A. B. and Dewald, E. L. and Tommasini, R. and Ralph, J. E. and Strozzi, D. J. and MacPhee, A. G. and Callahan, D. A. and Hinkel, D. E. and Hurricane, O. A. and Milovich, J. L. and Rygg, J. R. and Khan, S. F. and Haan, S. W. and Celliers, P. M. and Clark, D. S. and Hammel, B. A. and Kozioziemski, B. and Schneider, M. B. and Marinak, M. M. and Rinderknecht, H. G. and Robey, H. F. and Salmonson, J. D. and Patel, P. K. and Ma, T. and Edwards, M. J. and Stadermann, M. and Baxamusa, S. and Alford, C. and Wang, M. and Nikroo, A. and Rice, N. and Hoover, D. and Youngblood, K. P. and Xu, H. and Huang, H. and Sio, H.},
abstractNote = {The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. Furthermore, these results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.},
doi = {10.1063/1.4948277},
journal = {Physics of Plasmas},
number = 5,
volume = 23,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions
journal, May 2015


Symmetry tuning for ignition capsules via the symcap technique
journal, May 2011

  • Kyrala, G. A.; Kline, J. L.; Dixit, S.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3574504

Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility
journal, February 2014

  • Simakov, Andrei N.; Wilson, Douglas C.; Yi, Sunghwan A.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4864331

Tent-induced perturbations on areal density of implosions at the National Ignition Facilitya)
journal, May 2015

  • Tommasini, R.; Field, J. E.; Hammel, B. A.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921218

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

X-ray ablation rates in inertial confinement fusion capsule materials
journal, March 2011

  • Olson, R. E.; Rochau, G. A.; Landen, O. L.
  • Physics of Plasmas, Vol. 18, Issue 3
  • DOI: 10.1063/1.3566009

Capsule implosion optimization during the indirect-drive National Ignition Campaign
journal, May 2011

  • Landen, O. L.; Edwards, J.; Haan, S. W.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592170

Target diagnostic system for the national ignition facility (invited)
journal, January 1997

  • Leeper, R. J.; Chandler, G. A.; Cooper, G. W.
  • Review of Scientific Instruments, Vol. 68, Issue 1
  • DOI: 10.1063/1.1147917

Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility
journal, April 2011


The high-foot implosion campaign on the National Ignition Facility
journal, May 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874330

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments
journal, May 2012

  • Jones, O. S.; Cerjan, C. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4718595

Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions
journal, February 2015


Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions
journal, August 2013


Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility
journal, May 2013

  • Clark, D. S.; Hinkel, D. E.; Eder, D. C.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4802194

Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility
journal, May 2010

  • Michel, P.; Glenzer, S. H.; Divol, L.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3325733

The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited)
journal, October 2010

  • Kline, J. L.; Widmann, K.; Warrick, A.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491032

Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma
journal, January 1985

  • Takabe, H.; Mima, K.; Montierth, L.
  • Physics of Fluids, Vol. 28, Issue 12
  • DOI: 10.1063/1.865099

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Effect of the mounting membrane on shape in inertial confinement fusion implosions
journal, February 2015

  • Nagel, S. R.; Haan, S. W.; Rygg, J. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907179

Precision Shock Tuning on the National Ignition Facility
journal, May 2012


Backscatter measurements for NIF ignition targets (invited)
journal, October 2010

  • Moody, J. D.; Datte, P.; Krauter, K.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491035

Higher velocity, high-foot implosions on the National Ignition Facility lasera)
journal, May 2015

  • Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921144

Nuclear imaging of the fuel assembly in ignition experiments
journal, May 2013

  • Grim, G. P.; Guler, N.; Merrill, F. E.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4807291

Neutron source reconstruction from pinhole imaging at National Ignition Facility
journal, February 2014

  • Volegov, P.; Danly, C. R.; Fittinghoff, D. N.
  • Review of Scientific Instruments, Vol. 85, Issue 2
  • DOI: 10.1063/1.4865456

Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF
journal, October 2012

  • Ma, T.; Izumi, N.; Tommasini, R.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4733313

2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited)
journal, October 2010

  • Kyrala, G. A.; Dixit, S.; Glenzer, S.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3481028

Hydrodynamic instabilities in beryllium targets for the National Ignition Facility
journal, September 2014

  • Yi, S. A.; Simakov, A. N.; Wilson, D. C.
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4894112

National Ignition Campaign Hohlraum energetics
journal, May 2010

  • Meezan, N. B.; Atherton, L. J.; Callahan, D. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3354110

Demonstration of the Improved Rocket Efficiency in Direct-Drive Implosions Using Different Ablator Materials
journal, December 2013


Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry
journal, March 2013


Capsule Ablator Inflight Performance Measurements Via Streaked Radiography Of ICF Implosions On The NIF*
journal, March 2016


The neutron imaging diagnostic at NIF (invited)
journal, October 2012

  • Merrill, F. E.; Bower, D.; Buckles, R.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4739242

Implosion dynamics measurements at the National Ignition Facility
journal, December 2012

  • Hicks, D. G.; Meezan, N. B.; Dewald, E. L.
  • Physics of Plasmas, Vol. 19, Issue 12
  • DOI: 10.1063/1.4769268

Neutron time-of-flight and emission time diagnostics for the National Ignition Facility
journal, January 2001

  • Murphy, T. J.; Jimerson, J. L.; Berggren, R. R.
  • Review of Scientific Instruments, Vol. 72, Issue 1
  • DOI: 10.1063/1.1321001

The National Ignition Facility neutron time-of-flight system and its initial performance (invited)
journal, October 2010

  • Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3492351

High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility
journal, February 2014


Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


The development and advantages of beryllium capsules for the National Ignition Facility
journal, May 1998

  • Wilson, Douglas C.; Bradley, Paul A.; Hoffman, Nelson M.
  • Physics of Plasmas, Vol. 5, Issue 5
  • DOI: 10.1063/1.872865

Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign
journal, February 2015

  • Clark, D. S.; Marinak, M. M.; Weber, C. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4906897

Hohlraum energetics scaling to 520 TW on the National Ignition Facility
journal, May 2013

  • Kline, J. L.; Callahan, D. A.; Glenzer, S. H.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803907

Novel Characterization of Capsule X-Ray Drive at the National Ignition Facility
journal, March 2014