skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A density functional theory based approach for predicting melting points of ionic liquids

Abstract

Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculating melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolutemore » error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro-containing anions. As a result, continuous progress in predicting crystal structures of organic salts with halide anions will be a key factor for successful prediction of melting points with no prior knowledge of the crystal structure.« less

Authors:
 [1]; ORCiD logo [2]
  1. Univ. of Connecticut, Storrs, CT (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1408042
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 19; Journal Issue: 5; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Chen, Lihua, and Bryantsev, Vyacheslav S. A density functional theory based approach for predicting melting points of ionic liquids. United States: N. p., 2017. Web. doi:10.1039/c6cp08403f.
Chen, Lihua, & Bryantsev, Vyacheslav S. A density functional theory based approach for predicting melting points of ionic liquids. United States. doi:10.1039/c6cp08403f.
Chen, Lihua, and Bryantsev, Vyacheslav S. Tue . "A density functional theory based approach for predicting melting points of ionic liquids". United States. doi:10.1039/c6cp08403f. https://www.osti.gov/servlets/purl/1408042.
@article{osti_1408042,
title = {A density functional theory based approach for predicting melting points of ionic liquids},
author = {Chen, Lihua and Bryantsev, Vyacheslav S.},
abstractNote = {Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculating melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro-containing anions. As a result, continuous progress in predicting crystal structures of organic salts with halide anions will be a key factor for successful prediction of melting points with no prior knowledge of the crystal structure.},
doi = {10.1039/c6cp08403f},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 5,
volume = 19,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Single-Ion Solvation Free Energies and the Normal Hydrogen Electrode Potential in Methanol, Acetonitrile, and Dimethyl Sulfoxide
journal, January 2007

  • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 111, Issue 2
  • DOI: 10.1021/jp065403l

Atomistic Simulation of the Thermodynamic and Transport Properties of Ionic Liquids
journal, November 2007

  • Maginn, Edward J.
  • Accounts of Chemical Research, Vol. 40, Issue 11
  • DOI: 10.1021/ar700163c

Predictive thermodynamics for ionic solids and liquids
journal, January 2016

  • Glasser, Leslie; Jenkins, H. Donald Brooke
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 31
  • DOI: 10.1039/C6CP00235H

Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional
journal, July 2004

  • Heyd, Jochen; Scuseria, Gustavo E.
  • The Journal of Chemical Physics, Vol. 121, Issue 3, p. 1187-1192
  • DOI: 10.1063/1.1760074

Myths and Realities about Existing Methods for Calculating the Melting Temperatures of Ionic Liquids
journal, December 2013

  • Valderrama, José O.
  • Industrial & Engineering Chemistry Research, Vol. 53, Issue 2
  • DOI: 10.1021/ie403293z

Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional
journal, November 2005

  • Heyd, Jochen; Peralta, Juan E.; Scuseria, Gustavo E.
  • The Journal of Chemical Physics, Vol. 123, Issue 17
  • DOI: 10.1063/1.2085170

New developments in evolutionary structure prediction algorithm USPEX
journal, April 2013

  • Lyakhov, Andriy O.; Oganov, Artem R.; Stokes, Harold T.
  • Computer Physics Communications, Vol. 184, Issue 4
  • DOI: 10.1016/j.cpc.2012.12.009

DFT-D3 Study of Some Molecular Crystals
journal, March 2014

  • Moellmann, Jonas; Grimme, Stefan
  • The Journal of Physical Chemistry C, Vol. 118, Issue 14
  • DOI: 10.1021/jp501237c

Periodic boundary conditions in ab initio calculations
journal, February 1995


A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids
journal, January 2007

  • Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 33
  • DOI: 10.1039/b706728c

Electric-double-layer field-effect transistors with ionic liquids
journal, January 2013

  • Fujimoto, Takuya; Awaga, Kunio
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 23
  • DOI: 10.1039/c3cp50755f

Prediction of the Formation and Stabilities of Energetic Salts and Ionic Liquids Based on ab Initio Electronic Structure Calculations
journal, December 2005

  • Gutowski, Keith E.; Holbrey, John D.; Rogers, Robin D.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 49
  • DOI: 10.1021/jp053985l

How Evolutionary Crystal Structure Prediction Works—and Why
journal, March 2011

  • Oganov, Artem R.; Lyakhov, Andriy O.; Valle, Mario
  • Accounts of Chemical Research, Vol. 44, Issue 3
  • DOI: 10.1021/ar1001318

QSPR Correlation of the Melting Point for Pyridinium Bromides, Potential Ionic Liquids
journal, November 2001

  • Katritzky, Alan R.; Lomaka, Andre; Petrukhin, Ruslan
  • Journal of Chemical Information and Computer Sciences, Vol. 42, Issue 1
  • DOI: 10.1021/ci0100503

Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds
journal, August 2010


A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids
journal, January 2014

  • Izgorodina, Ekaterina I.; Golze, Dorothea; Maganti, Radha
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 16
  • DOI: 10.1039/C3CP53035C

Why Are Ionic Liquids Liquid? A Simple Explanation Based on Lattice and Solvation Energies
journal, October 2006

  • Krossing, Ingo; Slattery, John M.; Daguenet, Corinne
  • Journal of the American Chemical Society, Vol. 128, Issue 41
  • DOI: 10.1021/ja0619612

Local and semilocal density functional computations for crystals of 1-alkyl-3-methyl-imidazolium salts
journal, April 2007

  • Del Pópolo, M. G.; Pinilla, C.; Ballone, P.
  • The Journal of Chemical Physics, Vol. 126, Issue 14
  • DOI: 10.1063/1.2715571

Standard absolute entropies, S°298, from volume or density
journal, May 2004


Relationships among Ionic Lattice Energies, Molecular (Formula Unit) Volumes, and Thermochemical Radii
journal, August 1999

  • Jenkins, H. Donald B.; Roobottom, Helen K.; Passmore, Jack
  • Inorganic Chemistry, Vol. 38, Issue 16
  • DOI: 10.1021/ic9812961

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Assessing the Performances of Dispersion-Corrected Density Functional Methods for Predicting the Crystallographic Properties of High Nitrogen Energetic Salts
journal, October 2014

  • Sorescu, Dan C.; Byrd, Edward F. C.; Rice, Betsy M.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 11
  • DOI: 10.1021/ct5005615

Fluoride ion affinities of germanium tetrafluoride and boron trifluoride from thermodynamic and structural data for (SF3)2GeF6, ClO2GeF5, and ClO2BF4
journal, September 1984

  • Mallouk, Thomas E.; Rosenthal, Guy L.; Mueller, Gerhard
  • Inorganic Chemistry, Vol. 23, Issue 20
  • DOI: 10.1021/ic00188a028

Challenges for Density Functional Theory
journal, December 2011

  • Cohen, Aron J.; Mori-Sánchez, Paula; Yang, Weitao
  • Chemical Reviews, Vol. 112, Issue 1
  • DOI: 10.1021/cr200107z

Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis
journal, August 1999

  • Welton, Thomas
  • Chemical Reviews, Vol. 99, Issue 8, p. 2071-2084
  • DOI: 10.1021/cr980032t

A comparison of methods for melting point calculation using molecular dynamics simulations
journal, April 2012

  • Zhang, Yong; Maginn, Edward J.
  • The Journal of Chemical Physics, Vol. 136, Issue 14
  • DOI: 10.1063/1.3702587

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Prediction of Macroscopic Properties of Protic Ionic Liquids by Ab Initio Calculations
journal, September 2007

  • Markusson, Henrik; Belières, Jean-Philippe; Johansson, Patrik
  • The Journal of Physical Chemistry A, Vol. 111, Issue 35
  • DOI: 10.1021/jp072036k

Molecular Dynamics Simulation of Ionic Liquids:  The Effect of Electronic Polarizability
journal, August 2004

  • Yan, Tianying; Burnham, Christian J.; Del Pópolo, Mario G.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 32
  • DOI: 10.1021/jp047619y

Electrically Induced Ferromagnetism at Room Temperature in Cobalt-Doped Titanium Dioxide
journal, May 2011


Static Relative Dielectric Permittivities of Ionic Liquids at 25 °C
journal, April 2011

  • Huang, Mian-Mian; Jiang, Yanping; Sasisanker, Padmanabhan
  • Journal of Chemical & Engineering Data, Vol. 56, Issue 4
  • DOI: 10.1021/je101184s

A group contribution method to predict the melting point of ionic liquids
journal, January 2012


Exhaustive QSPR Studies of a Large Diverse Set of Ionic Liquids:  How Accurately Can We Predict Melting Points?
journal, March 2007

  • Varnek, Alexandre; Kireeva, Natalia; Tetko, Igor V.
  • Journal of Chemical Information and Modeling, Vol. 47, Issue 3
  • DOI: 10.1021/ci600493x

Thermodynamics of the Relationship between Lattice Energy and Lattice Enthalpy
journal, June 2005

  • Jenkins, H. Donald B.
  • Journal of Chemical Education, Vol. 82, Issue 6
  • DOI: 10.1021/ed082p950

Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs
journal, March 2015

  • Brandenburg, Jan Gerit; Maas, Tilo; Grimme, Stefan
  • The Journal of Chemical Physics, Vol. 142, Issue 12
  • DOI: 10.1063/1.4916070

Validation of Dispersion-Corrected Density Functional Theory Approaches for Ionic Liquid Systems
journal, September 2008

  • Zahn, Stefan; Kirchner, Barbara
  • The Journal of Physical Chemistry A, Vol. 112, Issue 36
  • DOI: 10.1021/jp805306u

Melting-Point Estimation of Ionic Liquids by a Group Contribution Method
journal, December 2011

  • Aguirre, Claudia L.; Cisternas, Luis A.; Valderrama, José O.
  • International Journal of Thermophysics, Vol. 33, Issue 1
  • DOI: 10.1007/s10765-011-1133-5

A Simple AIMD Approach to Derive Atomic Charges for Condensed Phase Simulation of Ionic Liquids
journal, August 2012

  • Zhang, Yong; Maginn, Edward J.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 33
  • DOI: 10.1021/jp3037999

Lattice and phase transition thermodynamics of ionic liquids
journal, November 2004


Polarizable Force Field Development and Molecular Dynamics Simulations of Ionic Liquids
journal, August 2009

  • Borodin, Oleg
  • The Journal of Physical Chemistry B, Vol. 113, Issue 33
  • DOI: 10.1021/jp905220k

Standard Absolute Entropy, , Values from Volume or Density. 1. Inorganic Materials
journal, December 2003

  • Jenkins, H. Donald Brooke; Glasser, Leslie
  • Inorganic Chemistry, Vol. 42, Issue 26
  • DOI: 10.1021/ic030219p

Quantum Mechanical Continuum Solvation Models for Ionic Liquids
journal, July 2012

  • Bernales, Varinia S.; Marenich, Aleksandr V.; Contreras, Renato
  • The Journal of Physical Chemistry B, Vol. 116, Issue 30
  • DOI: 10.1021/jp304365v

The Madelung Constant of Organic Salts
journal, November 2009

  • Izgorodina, Ekaterina I.; Bernard, Uditha L.; Dean, Pamela M.
  • Crystal Growth & Design, Vol. 9, Issue 11
  • DOI: 10.1021/cg900656z

New Insights into the Relationship between Ion-Pair Binding Energy and Thermodynamic and Transport Properties of Ionic Liquids
journal, July 2010

  • Bernard, Uditha L.; Izgorodina, Ekaterina I.; MacFarlane, Douglas R.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 48
  • DOI: 10.1021/jp1048875

Is Universal, Simple Melting Point Prediction Possible?
journal, September 2011

  • Preiss, Ulrich P.; Beichel, Witali; Erle, Anna M. T.
  • ChemPhysChem, Vol. 12, Issue 16
  • DOI: 10.1002/cphc.201100522

Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
journal, June 2006

  • Oganov, Artem R.; Glass, Colin W.
  • The Journal of Chemical Physics, Vol. 124, Issue 24
  • DOI: 10.1063/1.2210932

A simple physical model for the simultaneous rationalisation of melting points and heat capacities of ionic liquids
journal, January 2010

  • Zvereva, Elena E.; Katsyuba, Sergey A.; Dyson, Paul J.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 41
  • DOI: 10.1039/c0cp00881h

Atomic-Scale Characterization of Oxide Thin Films Gated by Ionic Liquid
journal, September 2014

  • Lang, Andrew C.; Sloppy, Jennifer D.; Ghassemi, Hessam
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 19
  • DOI: 10.1021/am504547b

In Silico Prediction of the Melting Points of Ionic Liquids from Thermodynamic Considerations: A Case Study on 67 Salts with a Melting Point Range of 337 °C
journal, September 2010

  • Preiss, Ulrich; Bulut, Safak; Krossing, Ingo
  • The Journal of Physical Chemistry B, Vol. 114, Issue 34
  • DOI: 10.1021/jp104679m