skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice

Abstract

Hybrid inorganic–organic superlattice with an electron-transmitting but phonon-blocking structure has emerged as a promising flexible thin film thermoelectric material. However, the substantial challenge in optimizing carrier concentration without disrupting the superlattice structure prevents further improvement of the thermoelectric performance. Here we demonstrate a strategy for carrier optimization in a hybrid inorganic–organic superlattice of TiS 2[tetrabutylammonium] x [hexylammonium] y, where the organic layers are composed of a random mixture of tetrabutylammonium and hexylammonium molecules. By vacuum heating the hybrid materials at an intermediate temperature, the hexylammonium molecules with a lower boiling point are selectively de-intercalated, which reduces the electron density due to the requirement of electroneutrality. The tetrabutylammonium molecules with a higher boiling point remain to support and stabilize the superlattice structure. Furthermore, the carrier concentration can thus be effectively reduced, resulting in a remarkably high power factor of 904 µW m –1 K –2 at 300 K for flexible thermoelectrics, approaching the values achieved in conventional inorganic semiconductors.

Authors:
 [1];  [2];  [3];  [4];  [1];  [2]
  1. Tsinghua Univ., Beijing (China)
  2. Toyota Physical and Chemical Research Institute, Nagakute (Japan)
  3. Nagoya Univ., Nagoya (Japan)
  4. Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE
OSTI Identifier:
1406989
Report Number(s):
NREL/JA-5500-70434
Journal ID: ISSN 2041-1723
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY; organic-inorganic nanostructures; thermoelectrics; two-dimensional materials

Citation Formats

Wan, Chunlei, Tian, Ruoming, Kondou, Mami, Yang, Ronggui, Zong, Pengan, and Koumoto, Kunihito. Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice. United States: N. p., 2017. Web. doi:10.1038/s41467-017-01149-4.
Wan, Chunlei, Tian, Ruoming, Kondou, Mami, Yang, Ronggui, Zong, Pengan, & Koumoto, Kunihito. Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice. United States. doi:10.1038/s41467-017-01149-4.
Wan, Chunlei, Tian, Ruoming, Kondou, Mami, Yang, Ronggui, Zong, Pengan, and Koumoto, Kunihito. Wed . "Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice". United States. doi:10.1038/s41467-017-01149-4. https://www.osti.gov/servlets/purl/1406989.
@article{osti_1406989,
title = {Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice},
author = {Wan, Chunlei and Tian, Ruoming and Kondou, Mami and Yang, Ronggui and Zong, Pengan and Koumoto, Kunihito},
abstractNote = {Hybrid inorganic–organic superlattice with an electron-transmitting but phonon-blocking structure has emerged as a promising flexible thin film thermoelectric material. However, the substantial challenge in optimizing carrier concentration without disrupting the superlattice structure prevents further improvement of the thermoelectric performance. Here we demonstrate a strategy for carrier optimization in a hybrid inorganic–organic superlattice of TiS2[tetrabutylammonium] x [hexylammonium] y, where the organic layers are composed of a random mixture of tetrabutylammonium and hexylammonium molecules. By vacuum heating the hybrid materials at an intermediate temperature, the hexylammonium molecules with a lower boiling point are selectively de-intercalated, which reduces the electron density due to the requirement of electroneutrality. The tetrabutylammonium molecules with a higher boiling point remain to support and stabilize the superlattice structure. Furthermore, the carrier concentration can thus be effectively reduced, resulting in a remarkably high power factor of 904 µW m–1 K–2 at 300 K for flexible thermoelectrics, approaching the values achieved in conventional inorganic semiconductors.},
doi = {10.1038/s41467-017-01149-4},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Engineered doping of organic semiconductors for enhanced thermoelectric efficiency
journal, May 2013

  • Kim, G-H.; Shao, L.; Zhang, K.
  • Nature Materials, Vol. 12, Issue 8
  • DOI: 10.1038/nmat3635

Electronic transport properties of K x C 70 thin films
journal, October 1993


Formation of NaTHFgraphite intercalation compounds
journal, June 1996


Cation exchange reactions and layer solvate complexes of ternary phases MxMoS2
journal, May 1974


Organic thermoelectric materials for energy harvesting and temperature control
journal, August 2016


Dielectric Mismatch Mediates Carrier Mobility in Organic-Intercalated Layered TiS 2
journal, September 2015


Flexible thermoelectric materials and device optimization for wearable energy harvesting
journal, January 2015

  • Bahk, Je-Hyeong; Fang, Haiyu; Yazawa, Kazuaki
  • Journal of Materials Chemistry C, Vol. 3, Issue 40
  • DOI: 10.1039/C5TC01644D

Importance of high power factor in thermoelectric materials for power generation application: A perspective
journal, January 2016


Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Intercalation compounds of graphite
journal, January 2002


Completely Organic Multilayer Thin Film with Thermoelectric Power Factor Rivaling Inorganic Tellurides
journal, April 2015

  • Cho, Chungyeon; Stevens, Bart; Hsu, Jui‐Hung
  • Advanced Materials, Vol. 27, Issue 19
  • DOI: 10.1002/adma.201405738

Flexible Power Fabrics Made of Carbon Nanotubes for Harvesting Thermoelectricity
journal, February 2014

  • Kim, Suk Lae; Choi, Kyungwho; Tazebay, Abdullah
  • ACS Nano, Vol. 8, Issue 3
  • DOI: 10.1021/nn405893t

Organic Thermoelectric Materials and Devices Based on p- and n-Type Poly(metal 1,1,2,2-ethenetetrathiolate)s
journal, January 2012


Power Factor Enhancement in Solution-Processed Organic n-Type Thermoelectrics Through Molecular Design
journal, March 2014

  • Russ, Boris; Robb, Maxwell J.; Brunetti, Fulvio G.
  • Advanced Materials, Vol. 26, Issue 21
  • DOI: 10.1002/adma.201306116

Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2
journal, April 2015

  • Wan, Chunlei; Gu, Xiaokun; Dang, Feng
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4251

Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials
journal, August 2016

  • Huang, Dazhen; Wang, Chao; Zou, Ye
  • Angewandte Chemie International Edition, Vol. 55, Issue 36
  • DOI: 10.1002/anie.201604478

Inorganic and Organic Solution-Processed Thin Film Devices
journal, September 2016


Fiber-based flexible thermoelectric power generator
journal, January 2008


Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties
journal, April 2016


Thermoelectric characteristics of (Zn,Al)O/hydroquinone superlattices
journal, January 2013

  • Tynell, Tommi; Terasaki, Ichiro; Yamauchi, Hisao
  • Journal of Materials Chemistry A, Vol. 1, Issue 43
  • DOI: 10.1039/c3ta12909h

Thermoelectrics: Carbon nanotubes get high
journal, April 2016


Toward High Performance n -Type Thermoelectric Materials by Rational Modification of BDPPV Backbones
journal, May 2015

  • Shi, Ke; Zhang, Fengjiao; Di, Chong-An
  • Journal of the American Chemical Society, Vol. 137, Issue 22
  • DOI: 10.1021/jacs.5b00945

In-situ conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C 60
journal, February 2012

  • Menke, Torben; Ray, Debdutta; Meiss, Jan
  • Applied Physics Letters, Vol. 100, Issue 9
  • DOI: 10.1063/1.3689778

Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
journal, April 2014

  • Zhao, Li-Dong; Lo, Shih-Han; Zhang, Yongsheng
  • Nature, Vol. 508, Issue 7496, p. 373-377
  • DOI: 10.1038/nature13184

Promising Thermoelectric Properties of Commercial PEDOT:PSS Materials and Their Bi 2 Te 3 Powder Composites
journal, October 2010

  • Zhang, B.; Sun, J.; Katz, H. E.
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 11
  • DOI: 10.1021/am100654p

Flexible n-Type High-Performance Thermoelectric Thin Films of Poly(nickel-ethylenetetrathiolate) Prepared by an Electrochemical Method
journal, March 2016


Copper ion liquid-like thermoelectrics
journal, March 2012

  • Liu, Huili; Shi, Xun; Xu, Fangfang
  • Nature Materials, Vol. 11, Issue 5, p. 422-425
  • DOI: 10.1038/nmat3273

Solubility-Limited Extrinsic n-Type Doping of a High Electron Mobility Polymer for Thermoelectric Applications
journal, January 2014

  • Schlitz, Ruth A.; Brunetti, Fulvio G.; Glaudell, Anne M.
  • Advanced Materials, Vol. 26, Issue 18
  • DOI: 10.1002/adma.201304866

Transport and optical properties of Ti 1 + x S 2
journal, August 1981


Anisotropic Tuning of Graphite Thermal Conductivity by Lithium Intercalation
journal, November 2016

  • Qian, Xin; Gu, Xiaokun; Dresselhaus, Mildred S.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 22
  • DOI: 10.1021/acs.jpclett.6b02295

    Works referencing / citing this record:

    Smart Textile‐Integrated Microelectronic Systems for Wearable Applications
    journal, July 2019


    Organic π-type thermoelectric module supported by photolithographic mold: a working hypothesis of sticky thermoelectric materials
    journal, July 2018

    • Satoh, Norifusa; Otsuka, Masaji; Ohki, Tomoko
    • Science and Technology of Advanced Materials, Vol. 19, Issue 1
    • DOI: 10.1080/14686996.2018.1487239

    Smart Textile‐Integrated Microelectronic Systems for Wearable Applications
    journal, July 2019