skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Active molecular iodine photochemistry in the Arctic

Abstract

During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I -) measurements, which were conducted near Utqiagvik, AK, in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na +, consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO)more » at levels recently observed in the Arctic. Furthermore, these results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [5];  [5];  [4];  [5];  [2]; ORCiD logo [3]
  1. Purdue Univ., West Lafayette, IN (United States); Univ. of Michigan, Ann Arbor, MI (United States)
  2. Purdue Univ., West Lafayette, IN (United States)
  3. Univ. of Michigan, Ann Arbor, MI (United States)
  4. Georgia Inst. of Technology, Atlanta, GA (United States)
  5. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1406742
Report Number(s):
PNNL-SA-129703
Journal ID: ISSN 0027-8424; 49331; KP1704020
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 114; Journal Issue: 38; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 54 ENVIRONMENTAL SCIENCES; Environmental Molecular Sciences Laboratory; atmosphere; iodine; cryosphere; snowpack; photochemistry

Citation Formats

Raso, Angela R. W., Custard, Kyle D., May, Nathaniel W., Tanner, David, Newburn, Matt K., Walker, Lawrence, Moore, Ronald J., Huey, L. G., Alexander, Liz, Shepson, Paul B., and Pratt, Kerri A. Active molecular iodine photochemistry in the Arctic. United States: N. p., 2017. Web. doi:10.1073/pnas.1702803114.
Raso, Angela R. W., Custard, Kyle D., May, Nathaniel W., Tanner, David, Newburn, Matt K., Walker, Lawrence, Moore, Ronald J., Huey, L. G., Alexander, Liz, Shepson, Paul B., & Pratt, Kerri A. Active molecular iodine photochemistry in the Arctic. United States. doi:10.1073/pnas.1702803114.
Raso, Angela R. W., Custard, Kyle D., May, Nathaniel W., Tanner, David, Newburn, Matt K., Walker, Lawrence, Moore, Ronald J., Huey, L. G., Alexander, Liz, Shepson, Paul B., and Pratt, Kerri A. Tue . "Active molecular iodine photochemistry in the Arctic". United States. doi:10.1073/pnas.1702803114. https://www.osti.gov/servlets/purl/1406742.
@article{osti_1406742,
title = {Active molecular iodine photochemistry in the Arctic},
author = {Raso, Angela R. W. and Custard, Kyle D. and May, Nathaniel W. and Tanner, David and Newburn, Matt K. and Walker, Lawrence and Moore, Ronald J. and Huey, L. G. and Alexander, Liz and Shepson, Paul B. and Pratt, Kerri A.},
abstractNote = {During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiagvik, AK, in February 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. Furthermore, these results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I2 is likely a dominant source of iodine atoms in the Arctic.},
doi = {10.1073/pnas.1702803114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 38,
volume = 114,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Surface ozone measurements in clean air
journal, January 1981


Iodine monoxide in the Antarctic snowpack
journal, January 2010

  • Frieß, U.; Deutschmann, T.; Gilfedder, B. S.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 5
  • DOI: 10.5194/acp-10-2439-2010

Halogens and their role in polar boundary-layer ozone depletion
journal, January 2007

  • Simpson, W. R.; von Glasow, R.; Riedel, K.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 16
  • DOI: 10.5194/acp-7-4375-2007

Photochemical chlorine and bromine activation from artificial saline snow
journal, January 2013

  • Wren, S. N.; Donaldson, D. J.; Abbatt, J. P. D.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 19
  • DOI: 10.5194/acp-13-9789-2013

Boundary Layer Halogens in Coastal Antarctica
journal, July 2007


Chlorine, Bromine AND Iodine in arctic aerosols
journal, January 1988


Kinetics and Products of the IO + BrO Reaction
journal, August 2001

  • Rowley, David M.; Bloss, William J.; Cox, R. Anthony
  • The Journal of Physical Chemistry A, Vol. 105, Issue 33
  • DOI: 10.1021/jp004494y

First observations of iodine oxide from space
journal, January 2007

  • Saiz-Lopez, Alfonso; Chance, Kelly; Liu, Xiong
  • Geophysical Research Letters, Vol. 34, Issue 12
  • DOI: 10.1029/2007GL030111

Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere
journal, January 2016

  • Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori
  • Environmental Science & Technology, Vol. 50, Issue 3
  • DOI: 10.1021/acs.est.5b05148

Photolysis of frozen iodate salts as a source of active iodine in the polar environment
journal, January 2016

  • Gálvez, Óscar; Baeza-Romero, M. Teresa; Sanz, Mikel
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 19
  • DOI: 10.5194/acp-16-12703-2016

Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3
journal, August 2016

  • Sipilä, Mikko; Sarnela, Nina; Jokinen, Tuija
  • Nature, Vol. 537, Issue 7621
  • DOI: 10.1038/nature19314

Compilation of Henry's law constants (version 4.0) for water as solvent
journal, January 2015


Photochemical production of molecular bromine in Arctic surface snowpacks
journal, April 2013

  • Pratt, Kerri A.; Custard, Kyle D.; Shepson, Paul B.
  • Nature Geoscience, Vol. 6, Issue 5
  • DOI: 10.1038/ngeo1779

Bromine explosion
journal, January 1999


Direct evidence for coastal iodine particles from Laminaria macroalgae – linkage to emissions of molecular iodine
journal, January 2004

  • McFiggans, G.; Coe, H.; Burgess, R.
  • Atmospheric Chemistry and Physics, Vol. 4, Issue 3
  • DOI: 10.5194/acp-4-701-2004

Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA
journal, January 2014

  • Allan, J. D.; Williams, P. I.; Najera, J.
  • Atmospheric Chemistry and Physics Discussions, Vol. 14, Issue 21
  • DOI: 10.5194/acpd-14-28949-2014

Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska
journal, January 2015

  • Thompson, C. R.; Shepson, P. B.; Liao, J.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 16
  • DOI: 10.5194/acp-15-9651-2015

Bromine measurements in ozone depleted air over the Arctic Ocean
journal, January 2010

  • Neuman, J. A.; Nowak, J. B.; Huey, L. G.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 14
  • DOI: 10.5194/acp-10-6503-2010

Potential influence of iodine-containing compounds on the chemistry of the troposphere in the polar spring. I. Ozone depletion
journal, September 2004


Kinetics and Product Yields in the Heterogeneous Reactions of HOBr with Ice Surfaces Containing NaBr and NaCl
journal, May 2002

  • Huff, Amy K.; Abbatt, Jonathan P. D.
  • The Journal of Physical Chemistry A, Vol. 106, Issue 21
  • DOI: 10.1021/jp014296m

Can We Model Snow Photochemistry? Problems with the Current Approaches
journal, May 2013

  • Domine, Florent; Bock, Josué; Voisin, Didier
  • The Journal of Physical Chemistry A, Vol. 117, Issue 23
  • DOI: 10.1021/jp3123314

Dynamics of ozone and nitrogen oxides at Summit, Greenland: I. Multi-year observations in the snowpack
journal, December 2015


Temporal and spatial characteristics of ozone depletion events from measurements in the Arctic
journal, January 2014

  • Halfacre, J. W.; Knepp, T. N.; Shepson, P. B.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 10
  • DOI: 10.5194/acp-14-4875-2014

Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere
journal, January 2012

  • Saiz-Lopez, A.; Lamarque, J. -F.; Kinnison, D. E.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 9
  • DOI: 10.5194/acp-12-3939-2012

Heterogeneous chemistry and tropospheric ozone
journal, January 2000


Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts
journal, February 2015

  • Simpson, William R.; Brown, Steven S.; Saiz-Lopez, Alfonso
  • Chemical Reviews, Vol. 115, Issue 10
  • DOI: 10.1021/cr5006638

Observations of inorganic bromine (HOBr, BrO, and Br 2 ) speciation at Barrow, Alaska, in spring 2009 : INORGANIC BROMINE SPECIATION AT BARROW
journal, March 2012

  • Liao, J.; Huey, L. G.; Tanner, D. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D14
  • DOI: 10.1029/2011JD016641

Non-metal redox kinetics: iodine monobromide reaction with iodide ion and the hydrolysis of IBr
journal, December 1991

  • Troy, Robert C.; Kelley, Mark D.; Nagy, Julius C.
  • Inorganic Chemistry, Vol. 30, Issue 25
  • DOI: 10.1021/ic00025a030

Constraints on Arctic Atmospheric Chlorine Production through Measurements and Simulations of Cl 2 and ClO
journal, October 2016

  • Custard, Kyle D.; Pratt, Kerri A.; Wang, Siyuan
  • Environmental Science & Technology, Vol. 50, Issue 22
  • DOI: 10.1021/acs.est.6b03909

Production and Release of Molecular Bromine and Chlorine from the Arctic Coastal Snowpack
journal, April 2017


Uncertainties in gas-phase atmospheric iodine chemistry
journal, September 2012


Anthropogenic aerosols and gases in the lower troposphere at Alert Canada in April 1986
journal, July 1989

  • Barrie, L. A.; den Hartog, G.; Bottenheim, J. W.
  • Journal of Atmospheric Chemistry, Vol. 9, Issue 1-3
  • DOI: 10.1007/BF00052827

Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere
journal, July 1988

  • Barrie, L. A.; Bottenheim, J. W.; Schnell, R. C.
  • Nature, Vol. 334, Issue 6178
  • DOI: 10.1038/334138a0

Observations of BrO and its vertical distribution during surface ozone depletion at Alert
journal, May 2002


Experimental verification of gas phase bromine enrichment in reactions of HOBr with sea salt doped ice surfaces
journal, June 1997

  • Kirchner, U.; Benter, T. H.; Schindler, R. N.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 101, Issue 6
  • DOI: 10.1002/bbpc.19971010614

Evidence of reactive iodine chemistry in the Arctic boundary layer
journal, January 2010

  • Mahajan, Anoop S.; Shaw, Marvin; Oetjen, Hilke
  • Journal of Geophysical Research, Vol. 115, Issue D20
  • DOI: 10.1029/2009JD013665

Bromine activation in the troposphere by the dark reaction of O 3 with seawater ice
journal, November 1998

  • Oum, K. W.; Lakin, M. J.; Finlayson-Pitts, B. J.
  • Geophysical Research Letters, Vol. 25, Issue 21
  • DOI: 10.1029/1998GL900078

Iodine chemistry in the troposphere and its effect on ozone
journal, January 2014

  • Saiz-Lopez, A.; Fernandez, R. P.; Ordóñez, C.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 23
  • DOI: 10.5194/acp-14-13119-2014

Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992
journal, January 1994

  • Hausmann, M.; Platt, U.
  • Journal of Geophysical Research, Vol. 99, Issue D12
  • DOI: 10.1029/94JD01314

Release of Gas-Phase Halogens by Photolytic Generation of OH in Frozen Halide−Nitrate Solutions: An Active Halogen Formation Mechanism?
journal, June 2010

  • Abbatt, J.; Oldridge, N.; Symington, A.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 23
  • DOI: 10.1021/jp102072t

Absolute absorption cross-section and photolysis rate of I<sub>2</sub>
journal, January 2004

  • Saiz-Lopez, A.; Saunders, R. W.; Joseph, D. M.
  • Atmospheric Chemistry and Physics, Vol. 4, Issue 5
  • DOI: 10.5194/acp-4-1443-2004

Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation
journal, January 2006

  • Saiz-Lopez, A.; Plane, J. M. C.; McFiggans, G.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 4
  • DOI: 10.5194/acp-6-883-2006

Halogens in the coastal snow pack near Barrow, Alaska: Evidence for active bromine air-snow chemistry during springtime: BROMIDE IN SNOW NEAR BARROW
journal, February 2005

  • Simpson, William R.; Alvarez-Aviles, Laura; Douglas, Thomas A.
  • Geophysical Research Letters, Vol. 32, Issue 4
  • DOI: 10.1029/2004GL021748

A mechanism for biologically-induced iodine emissions from sea-ice
journal, January 2015

  • Saiz-Lopez, A.; Blaszczak-Boxe, C. S.; Carpenter, L. J.
  • Atmospheric Chemistry and Physics Discussions, Vol. 15, Issue 7
  • DOI: 10.5194/acpd-15-10257-2015

Novel iodine chemistry in the marine boundary layer
journal, January 2004


The polar iodine paradox
journal, November 2016


High levels of molecular chlorine in the Arctic atmosphere
journal, January 2014

  • Liao, Jin; Huey, L. Gregory; Liu, Zhen
  • Nature Geoscience, Vol. 7, Issue 2
  • DOI: 10.1038/ngeo2046

Observations of rapid photochemical destruction of ozone in snowpack interstitial air
journal, February 2001

  • Peterson, M. C.; Honrath, R. E.
  • Geophysical Research Letters, Vol. 28, Issue 3
  • DOI: 10.1029/2000GL012129

Atmospheric Chemistry of Iodine
journal, October 2011

  • Saiz-Lopez, Alfonso; Plane, John M. C.; Baker, Alex R.
  • Chemical Reviews, Vol. 112, Issue 3
  • DOI: 10.1021/cr200029u

A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow
journal, January 2014

  • Bartels-Rausch, T.; Jacobi, H. -W.; Kahan, T. F.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 3
  • DOI: 10.5194/acp-14-1587-2014

Dependence of the vertical distribution of bromine monoxide in the lower troposphere on meteorological factors such as wind speed and stability
journal, January 2015

  • Peterson, P. K.; Simpson, W. R.; Pratt, K. A.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 4
  • DOI: 10.5194/acp-15-2119-2015

Modeling chemistry in and above snow at Summit, Greenland – Part 1: Model description and results
journal, January 2011

  • Thomas, J. L.; Stutz, J.; Lefer, B.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 10
  • DOI: 10.5194/acp-11-4899-2011

Iodine emissions from the sea ice of the Weddell Sea
journal, January 2012

  • Atkinson, H. M.; Huang, R. -J.; Chance, R.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 22
  • DOI: 10.5194/acp-12-11229-2012

The Role of Br2 and BrCl in Surface Ozone Destruction at Polar Sunrise
journal, January 2001


Equilibrium and Kinetics of Bromine Hydrolysis
journal, January 1996

  • Beckwith, Richard C.; Wang, Tian Xiang; Margerum, Dale W.
  • Inorganic Chemistry, Vol. 35, Issue 4
  • DOI: 10.1021/ic950909w

The distribution of dissolved inorganic iodine in the seas around Iceland
journal, September 2006


A comparison of Arctic BrO measurements by chemical ionization mass spectrometry and long path-differential optical absorption spectroscopy
journal, January 2011

  • Liao, J.; Sihler, H.; Huey, L. G.
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2010JD014788

Extinction of UV radiation in Arctic snow at Alert, Canada (82°N)
journal, June 2001

  • King, Martin D.; Simpson, William R.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D12
  • DOI: 10.1029/2001JD900006

Uptake and reaction of HOI and IONO2 on frozen and dry NaCl/NaBr surfaces and H2SO4
journal, January 2001

  • Holmes, Nicholas S.; Adams, Jonathan W.; Crowley, John N.
  • Physical Chemistry Chemical Physics, Vol. 3, Issue 9
  • DOI: 10.1039/b100247n

Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine
journal, January 2013

  • Carpenter, Lucy J.; MacDonald, Samantha M.; Shaw, Marvin D.
  • Nature Geoscience, Vol. 6, Issue 2
  • DOI: 10.1038/ngeo1687

Uptake and reaction of HOBr on frozen and dry NaCl/NaBr surfaces between 253 and 233 K
journal, January 2002

  • Adams, J. W.; Holmes, N. S.; Crowley, J. N.
  • Atmospheric Chemistry and Physics, Vol. 2, Issue 1
  • DOI: 10.5194/acp-2-79-2002

    Works referencing / citing this record:

    Modeling the Sources and Chemistry of Polar Tropospheric Halogens (Cl, Br, and I) Using the CAM‐Chem Global Chemistry‐Climate Model
    journal, July 2019

    • Fernandez, Rafael P.; Carmona‐Balea, Antía; Cuevas, Carlos A.
    • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 7
    • DOI: 10.1029/2019ms001655

    Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion
    journal, June 2019

    • Wang, Siyuan; McNamara, Stephen M.; Moore, Christopher W.
    • Proceedings of the National Academy of Sciences, Vol. 116, Issue 29
    • DOI: 10.1073/pnas.1900613116

    Modeling the Sources and Chemistry of Polar Tropospheric Halogens (Cl, Br, and I) Using the CAM‐Chem Global Chemistry‐Climate Model
    journal, July 2019

    • Fernandez, Rafael P.; Carmona‐Balea, Antía; Cuevas, Carlos A.
    • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 7
    • DOI: 10.1029/2019ms001655

    Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion
    journal, June 2019

    • Wang, Siyuan; McNamara, Stephen M.; Moore, Christopher W.
    • Proceedings of the National Academy of Sciences, Vol. 116, Issue 29
    • DOI: 10.1073/pnas.1900613116