Strong Photothermoelectric Response and Contact Reactivity of the Dirac Semimetal ZrTe5
- Sandia National Lab. (SNL-CA), Livermore, CA (United States)
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
The family of three-dimensional topological insulators opens new avenues to discover novel photophysics and to develop novel types of photodetectors. ZrTe5 has been shown to be a Dirac semimetal possessing unique topological, electronic, and optical properties. Here, we present spatially resolved photocurrent measurements on devices made of nanoplatelets of ZrTe5, demonstrating the photothermoelectric origin of the photoresponse. Because of the high electrical conductivity and good Seebeck coefficient, we obtain noise-equivalent powers as low as 42 pW/Hz1/2, at room temperature for visible light illumination, at zero bias. We also show that these devices suffer from significant ambient reactivity, such as the formation of a Te-rich surface region driven by Zr oxidation as well as severe reactions with the metal contacts. This reactivity results in significant stresses in the devices, leading to unusual geometries that are useful for gaining insight into the photocurrent mechanisms. Lastly, our results indicate that both the large photothermoelectric response and reactivity must be considered when designing or interpreting photocurrent measurements in these systems.
- Research Organization:
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1406373
- Report Number(s):
- SAND-2017-11576J; 658160
- Journal Information:
- ACS Applied Materials and Interfaces, Vol. 9, Issue 42; ISSN 1944-8244
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Visualization of bulk and edge photocurrent flow in anisotropic Weyl semimetals
Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe5