skip to main content

DOE PAGESDOE PAGES

Title: Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory

We validate the application of our recent orbital-free density functional theory (DFT) approach, [Phys. Rev. Lett. 113, 155006 (2014)], for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)].
Authors:
 [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Report Number(s):
LA-UR-15-27493
Journal ID: ISSN 1539-3755; PLEEE8
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
Additional Journal Information:
Journal Volume: 92; Journal Issue: 6; Journal ID: ISSN 1539-3755
Publisher:
American Physical Society (APS)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; conductivity; warm dense matter; orbital-free density functional theory
OSTI Identifier:
1406202
Alternate Identifier(s):
OSTI ID: 1228441