DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cross‐species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots

Abstract

Abstract Plant responses to the environment are shaped by external stimuli and internal signaling pathways. In both the model plant Arabidopsis thaliana ( Arabidopsis ) and crop species, circadian clock factors are critical for growth, flowering, and circadian rhythms. Outside of Arabidopsis, however, little is known about the molecular function of clock gene products. Therefore, we sought to compare the function of Brachypodium distachyon ( Brachypodium ) and Setaria viridis ( Setaria ) orthologs of EARLY FLOWERING 3, a key clock gene in Arabidopsis . To identify both cycling genes and putative ELF 3 functional orthologs in Setaria , a circadian RNA ‐seq dataset and online query tool (Diel Explorer) were generated to explore expression profiles of Setaria genes under circadian conditions. The function of ELF 3 orthologs from Arabidopsis, Brachypodium, and Setaria was tested for complementation of an elf3 mutation in Arabidopsis . We find that both monocot orthologs were capable of rescuing hypocotyl elongation, flowering time, and arrhythmic clock phenotypes. Using affinity purification and mass spectrometry, our data indicate that Bd ELF 3 and Sv ELF 3 could be integrated into similar complexes in vivo as At ELF 3. Thus, we find that, despite 180 million years of separation,more » Bd ELF 3 and Sv ELF 3 can functionally complement loss of ELF 3 at the molecular and physiological level.« less

Authors:
 [1];  [1];  [2];  [1];  [1];  [3];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Donald Danforth Plant Science Center St. Louis MO USA
  2. Webster University Webster Groves MO USA
  3. Saint Louis University St. Louis MO USA
Publication Date:
Research Org.:
Donald Danforth Plant Science Center, St. Louis, MO (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1406155
Alternate Identifier(s):
OSTI ID: 1406157; OSTI ID: 1904510
Grant/Contract Number:  
DE‐SC0012639, and; DE‐SC0008769; SC0006627; SC0008769; SC0012639; IOS-1456796; DBI-0922879; IOS-1202682
Resource Type:
Published Article
Journal Name:
Plant Direct
Additional Journal Information:
Journal Name: Plant Direct Journal Volume: 1 Journal Issue: 4; Journal ID: ISSN 2475-4455
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United Kingdom
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; circadian clock; circadian RNA-seq; ELF3; flowering; growth; Setaria

Citation Formats

Huang, He, Gehan, Malia A., Huss, Sarah E., Alvarez, Sophie, Lizarraga, Cesar, Gruebbling, Ellen L., Gierer, John, Naldrett, Michael J., Bindbeutel, Rebecca K., Evans, Bradley S., Mockler, Todd C., and Nusinow, Dmitri A. Cross‐species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots. United Kingdom: N. p., 2017. Web. doi:10.1002/pld3.18.
Huang, He, Gehan, Malia A., Huss, Sarah E., Alvarez, Sophie, Lizarraga, Cesar, Gruebbling, Ellen L., Gierer, John, Naldrett, Michael J., Bindbeutel, Rebecca K., Evans, Bradley S., Mockler, Todd C., & Nusinow, Dmitri A. Cross‐species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots. United Kingdom. https://doi.org/10.1002/pld3.18
Huang, He, Gehan, Malia A., Huss, Sarah E., Alvarez, Sophie, Lizarraga, Cesar, Gruebbling, Ellen L., Gierer, John, Naldrett, Michael J., Bindbeutel, Rebecca K., Evans, Bradley S., Mockler, Todd C., and Nusinow, Dmitri A. Mon . "Cross‐species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots". United Kingdom. https://doi.org/10.1002/pld3.18.
@article{osti_1406155,
title = {Cross‐species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots},
author = {Huang, He and Gehan, Malia A. and Huss, Sarah E. and Alvarez, Sophie and Lizarraga, Cesar and Gruebbling, Ellen L. and Gierer, John and Naldrett, Michael J. and Bindbeutel, Rebecca K. and Evans, Bradley S. and Mockler, Todd C. and Nusinow, Dmitri A.},
abstractNote = {Abstract Plant responses to the environment are shaped by external stimuli and internal signaling pathways. In both the model plant Arabidopsis thaliana ( Arabidopsis ) and crop species, circadian clock factors are critical for growth, flowering, and circadian rhythms. Outside of Arabidopsis, however, little is known about the molecular function of clock gene products. Therefore, we sought to compare the function of Brachypodium distachyon ( Brachypodium ) and Setaria viridis ( Setaria ) orthologs of EARLY FLOWERING 3, a key clock gene in Arabidopsis . To identify both cycling genes and putative ELF 3 functional orthologs in Setaria , a circadian RNA ‐seq dataset and online query tool (Diel Explorer) were generated to explore expression profiles of Setaria genes under circadian conditions. The function of ELF 3 orthologs from Arabidopsis, Brachypodium, and Setaria was tested for complementation of an elf3 mutation in Arabidopsis . We find that both monocot orthologs were capable of rescuing hypocotyl elongation, flowering time, and arrhythmic clock phenotypes. Using affinity purification and mass spectrometry, our data indicate that Bd ELF 3 and Sv ELF 3 could be integrated into similar complexes in vivo as At ELF 3. Thus, we find that, despite 180 million years of separation, Bd ELF 3 and Sv ELF 3 can functionally complement loss of ELF 3 at the molecular and physiological level.},
doi = {10.1002/pld3.18},
journal = {Plant Direct},
number = 4,
volume = 1,
place = {United Kingdom},
year = {Mon Oct 16 00:00:00 EDT 2017},
month = {Mon Oct 16 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/pld3.18

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A High-Throughput Method for Illumina RNA-Seq Library Preparation
journal, January 2012

  • Kumar, Ravi; Ichihashi, Yasunori; Kimura, Seisuke
  • Frontiers in Plant Science, Vol. 3
  • DOI: 10.3389/fpls.2012.00202

Circadian rhythms vary over the growing season and correlate with fitness components
journal, September 2017

  • Rubin, Matthew J.; Brock, Marcus T.; Davis, Amanda M.
  • Molecular Ecology, Vol. 26, Issue 20
  • DOI: 10.1111/mec.14287

Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects
journal, March 2010

  • Poiré, Richard; Wiese-Klinkenberg, Anika; Parent, Boris
  • Journal of Experimental Botany, Vol. 61, Issue 6
  • DOI: 10.1093/jxb/erq049

Rhythmic growth explained by coincidence between internal and external cues
journal, June 2007

  • Nozue, Kazunari; Covington, Michael F.; Duek, Paula D.
  • Nature, Vol. 448, Issue 7151
  • DOI: 10.1038/nature05946

Photoperiodic Flowering: Time Measurement Mechanisms in Leaves
journal, April 2015


The developmental dynamics of the maize leaf transcriptome
journal, October 2010

  • Li, Pinghua; Ponnala, Lalit; Gandotra, Neeru
  • Nature Genetics, Vol. 42, Issue 12, p. 1060-1067
  • DOI: 10.1038/ng.703

Daily Changes in Temperature, Not the Circadian Clock, Regulate Growth Rate in Brachypodium distachyon
journal, June 2014


The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth
journal, July 2011

  • Nusinow, Dmitri A.; Helfer, Anne; Hamilton, Elizabeth E.
  • Nature, Vol. 475, Issue 7356
  • DOI: 10.1038/nature10182

EARLY FLOWERING3 Encodes a Novel Protein That Regulates Circadian Clock Function and Flowering in Arabidopsis
journal, June 2001

  • Hicks, Karen A.; Albertson, Tina M.; Wagner, D. Ry
  • The Plant Cell, Vol. 13, Issue 6
  • DOI: 10.1105/TPC.010070

Ambient Temperature Signal Feeds into the Circadian Clock Transcriptional Circuitry Through the EC Night-Time Repressor in Arabidopsis thaliana
journal, March 2014

  • Mizuno, Takeshi; Nomoto, Yuji; Oka, Haruka
  • Plant and Cell Physiology, Vol. 55, Issue 5
  • DOI: 10.1093/pcp/pcu030

A conserved molecular basis for photoperiod adaptation in two temperate legumes
journal, December 2012

  • Weller, J. L.; Liew, L. C.; Hecht, V. F. G.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 51
  • DOI: 10.1073/pnas.1207943110

NCBI GEO: archive for functional genomics data sets—update
journal, November 2012

  • Barrett, Tanya; Wilhite, Stephen E.; Ledoux, Pierre
  • Nucleic Acids Research, Vol. 41, Issue D1
  • DOI: 10.1093/nar/gks1193

Independent Roles for EARLY FLOWERING 3 and ZEITLUPE in the Control of Circadian Timing, Hypocotyl Length, and Flowering Time
journal, October 2005

  • Kim, Woe-Yeon; Hicks, Karen A.; Somers, David E.
  • Plant Physiology, Vol. 139, Issue 3
  • DOI: 10.1104/pp.105.067173

Similarities in the circadian clock and photoperiodism in plants
journal, October 2010

  • Song, Young Hun; Ito, Shogo; Imaizumi, Takato
  • Current Opinion in Plant Biology, Vol. 13, Issue 5
  • DOI: 10.1016/j.pbi.2010.05.004

Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method
journal, June 2006

  • Zhang, Xiuren; Henriques, Rossana; Lin, Shih-Shun
  • Nature Protocols, Vol. 1, Issue 2
  • DOI: 10.1038/nprot.2006.97

ProteomeXchange provides globally coordinated proteomics data submission and dissemination
journal, March 2014

  • Vizcaíno, Juan A.; Deutsch, Eric W.; Wang, Rui
  • Nature Biotechnology, Vol. 32, Issue 3
  • DOI: 10.1038/nbt.2839

Setaria viridis : A Model for C 4 Photosynthesis
journal, August 2010

  • Brutnell, Thomas P.; Wang, Lin; Swartwood, Kerry
  • The Plant Cell, Vol. 22, Issue 8
  • DOI: 10.1105/tpc.110.075309

Temporal Repression of Core Circadian Genes Is Mediated through EARLY FLOWERING 3 in Arabidopsis
journal, January 2011


Two Arabidopsis circadian oscillators can be distinguished by differential temperature sensitivity
journal, May 2003

  • Michael, T. P.; Salome, P. A.; McClung, C. R.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 11
  • DOI: 10.1073/pnas.1131995100

Resonating circadian clocks enhance fitness in cyanobacteria
journal, July 1998

  • Ouyang, Y.; Andersson, C. R.; Kondo, T.
  • Proceedings of the National Academy of Sciences, Vol. 95, Issue 15
  • DOI: 10.1073/pnas.95.15.8660

Circadian Clock Genes Universally Control Key Agricultural Traits
journal, August 2015


Evolutionary Relationships Among Barley and Arabidopsis Core Circadian Clock and Clock-Associated Genes
journal, January 2015

  • Calixto, Cristiane P. G.; Waugh, Robbie; Brown, John W. S.
  • Journal of Molecular Evolution, Vol. 80, Issue 2
  • DOI: 10.1007/s00239-015-9665-0

Wheels within wheels: the plant circadian system
journal, April 2014


Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry
journal, November 2015

  • Huang, He; Alvarez, Sophie; Bindbeutel, Rebecca
  • Molecular & Cellular Proteomics, Vol. 15, Issue 1
  • DOI: 10.1074/mcp.M115.054064

Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley
journal, February 2012

  • Zakhrabekova, S.; Gough, S. P.; Braumann, I.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 11
  • DOI: 10.1073/pnas.1113009109

Network Discovery Pipeline Elucidates Conserved Time-of-Day–Specific cis-Regulatory Modules
journal, January 2008


OsELF3 Is Involved in Circadian Clock Regulation for Promoting Flowering under Long-Day Conditions in Rice
journal, January 2013

  • Yang, Ying; Peng, Qiang; Chen, Guo-Xing
  • Molecular Plant, Vol. 6, Issue 1
  • DOI: 10.1093/mp/sss062

Phytozome: a comparative platform for green plant genomics
journal, November 2011

  • Goodstein, David M.; Shu, Shengqiang; Howson, Russell
  • Nucleic Acids Research, Vol. 40, Issue D1
  • DOI: 10.1093/nar/gkr944

Circadian control of carbohydrate availability for growth in Arabidopsis plants at night
journal, May 2010

  • Graf, A.; Schlereth, A.; Stitt, M.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 20
  • DOI: 10.1073/pnas.0914299107

Coordination of the maize transcriptome by a conserved circadian clock
journal, January 2010


Comparative Genomics of Flowering Time Pathways Using Brachypodium distachyon as a Model for the Temperate Grasses
journal, April 2010


Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development
journal, January 2008


Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
journal, January 2002


Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice
journal, October 2014

  • Wang, Lin; Czedik-Eysenberg, Angelika; Mertz, Rachel A.
  • Nature Biotechnology, Vol. 32, Issue 11
  • DOI: 10.1038/nbt.3019

Empirical Statistical Model To Estimate the Accuracy of Peptide Identifications Made by MS/MS and Database Search
journal, October 2002

  • Keller, Andrew; Nesvizhskii, Alexey I.; Kolker, Eugene
  • Analytical Chemistry, Vol. 74, Issue 20
  • DOI: 10.1021/ac025747h

The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana
journal, September 2002

  • Doyle, Mark R.; Davis, Seth J.; Bastow, Ruth M.
  • Nature, Vol. 419, Issue 6902
  • DOI: 10.1038/nature00954

NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons
journal, May 2012

  • Faure, S.; Turner, A. S.; Gruszka, D.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 21
  • DOI: 10.1073/pnas.1120496109

The Adaptive Value of Circadian Clocks
journal, August 2004


ELF3 Modulates Resetting of the Circadian Clock in Arabidopsis
journal, June 2001

  • Covington, Michael F.; Panda, Satchidananda; Liu, Xing Liang
  • The Plant Cell, Vol. 13, Issue 6
  • DOI: 10.1105/TPC.000561

Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian Clock
journal, December 2000


Timing of plant immune responses by a central circadian regulator
journal, February 2011

  • Wang, Wei; Barnaby, Jinyoung Yang; Tada, Yasuomi
  • Nature, Vol. 470, Issue 7332
  • DOI: 10.1038/nature09766

LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms
journal, July 2005

  • Hazen, S. P.; Schultz, T. F.; Pruneda-Paz, J. L.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 29
  • DOI: 10.1073/pnas.0503029102

Advanced methods of microscope control using μManager software
journal, July 2014

  • Edelstein, Arthur D.; Tsuchida, Mark A.; Amodaj, Nenad
  • Journal of Biological Methods, Vol. 1, Issue 2
  • DOI: 10.14440/jbm.2014.36

EARLY FLOWERING4 Recruitment of EARLY FLOWERING3 in the Nucleus Sustains the Arabidopsis Circadian Clock
journal, February 2012


Ef7 Encodes an ELF3-like Protein and Promotes Rice Flowering by Negatively Regulating the Floral Repressor Gene Ghd7 under Both Short- and Long-Day Conditions
journal, March 2012

  • Saito, Hiroki; Ogiso-Tanaka, Eri; Okumoto, Yutaka
  • Plant and Cell Physiology, Vol. 53, Issue 4
  • DOI: 10.1093/pcp/pcs029

Natural Variation in Hd17, a Homolog of Arabidopsis ELF3 That is Involved in Rice Photoperiodic Flowering
journal, March 2012

  • Matsubara, Kazuki; Ogiso-Tanaka, Eri; Hori, Kiyosumi
  • Plant and Cell Physiology, Vol. 53, Issue 4
  • DOI: 10.1093/pcp/pcs028

The Circadian System in Higher Plants
journal, June 2009


Circadian Rhythms Confer a Higher Level of Fitness to Arabidopsis Plants
journal, May 2002

  • Green, Rachel M.; Tingay, Sonia; Wang, Zhi-Yong
  • Plant Physiology, Vol. 129, Issue 2
  • DOI: 10.1104/pp.004374

Circadian Control of Global Gene Expression Patterns
journal, December 2010


COP1 and ELF3 Control Circadian Function and Photoperiodic Flowering by Regulating GI Stability
journal, December 2008


An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes
journal, December 2014

  • Van Leene, Jelle; Eeckhout, Dominique; Cannoot, Bernard
  • Nature Protocols, Vol. 10, Issue 1
  • DOI: 10.1038/nprot.2014.199

Beyond Arabidopsis: The circadian clock in non-model plant species
journal, May 2013


The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops
journal, January 2012

  • Pokhilko, Alexandra; Fernández, Aurora Piñas; Edwards, Kieron D.
  • Molecular Systems Biology, Vol. 8, Issue 1
  • DOI: 10.1038/msb.2012.6

Peroxiredoxins are conserved markers of circadian rhythms
journal, May 2012

  • Edgar, Rachel S.; Green, Edward W.; Zhao, Yuwei
  • Nature, Vol. 485, Issue 7399
  • DOI: 10.1038/nature11088

Conditional Circadian Dysfunction of the Arabidopsis early-flowering 3 Mutant
journal, November 1996


Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis
journal, August 2014

  • Sakuraba, Yasuhito; Jeong, Jinkil; Kang, Min-Young
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5636

Integrating circadian dynamics with physiological processes in plants
journal, September 2015

  • Greenham, Kathleen; McClung, C. Robertson
  • Nature Reviews Genetics, Vol. 16, Issue 10
  • DOI: 10.1038/nrg3976

The Evolutionarily Conserved OsPRR Quintet: Rice Pseudo-Response Regulators Implicated in Circadian Rhythm
journal, November 2003

  • Murakami, Masaya; Ashikari, Motoyuki; Miura, Kotaro
  • Plant and Cell Physiology, Vol. 44, Issue 11
  • DOI: 10.1093/pcp/pcg135

A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry
journal, September 2003

  • Nesvizhskii, Alexey I.; Keller, Andrew; Kolker, Eugene
  • Analytical Chemistry, Vol. 75, Issue 17
  • DOI: 10.1021/ac0341261

Circadian rhythms from multiple oscillators: lessons from diverse organisms
journal, July 2005

  • Bell-Pedersen, Deborah; Cassone, Vincent M.; Earnest, David J.
  • Nature Reviews Genetics, Vol. 6, Issue 7
  • DOI: 10.1038/nrg1633

Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock
journal, October 2016


PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis
journal, February 2016


Early-Flowering Mutants of Arabidopsis thaliana
journal, January 1992

  • Zagotta, Mt; Shannon, S.; Jacobs, C.
  • Functional Plant Biology, Vol. 19, Issue 4
  • DOI: 10.1071/PP9920411

Basic local alignment search tool
journal, October 1990

  • Altschul, Stephen F.; Gish, Warren; Miller, Webb
  • Journal of Molecular Biology, Vol. 215, Issue 3, p. 403-410
  • DOI: 10.1016/S0022-2836(05)80360-2

Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega
journal, January 2011

  • Sievers, Fabian; Wilm, Andreas; Dineen, David
  • Molecular Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1038/msb.2011.75

The Impact of Domestication on the Circadian Clock
journal, April 2016


Mutation of Rice Early Flowering3.1 (OsELF3.1) delays leaf senescence in rice
journal, July 2016

  • Sakuraba, Yasuhito; Han, Su-Hyun; Yang, Hyun-Jung
  • Plant Molecular Biology, Vol. 92, Issue 1-2
  • DOI: 10.1007/s11103-016-0507-2

Interplay of Circadian Clocks and Metabolic Rhythms
journal, December 2006


OsELF3-1, an Ortholog of Arabidopsis EARLY FLOWERING 3, Regulates Rice Circadian Rhythm and Photoperiodic Flowering
journal, August 2012


Reference genome sequence of the model plant Setaria
journal, May 2012

  • Bennetzen, Jeffrey L.; Schmutz, Jeremy; Wang, Hao
  • Nature Biotechnology, Vol. 30, Issue 6
  • DOI: 10.1038/nbt.2196

A Functional Genomics Approach Reveals CHE as a Component of the Arabidopsis Circadian Clock
journal, March 2009


Two New Clock Proteins, LWD1 and LWD2, Regulate Arabidopsis Photoperiodic Flowering
journal, August 2008


Quantitative Analysis of Drosophila period Gene Transcription in Living Animals
journal, June 1997

  • Plautz, Jeffrey D.; Straume, Martin; Stanewsky, Ralf
  • Journal of Biological Rhythms, Vol. 12, Issue 3
  • DOI: 10.1177/074873049701200302

Tandem Purification of His6-3x FLAG Tagged Proteins for Mass Spectrometry from Arabidopsis
journal, January 2016


The Diurnal Project: Diurnal and Circadian Expression Profiling, Model-based Pattern Matching, and Promoter Analysis
journal, January 2007

  • Mockler, T. C.; Michael, T. P.; Priest, H. D.
  • Cold Spring Harbor Symposia on Quantitative Biology, Vol. 72, Issue 1
  • DOI: 10.1101/sqb.2007.72.006

EARLY FLOWERING 4 Functions in Phytochrome B-Regulated Seedling De-Etiolation
journal, November 2003

  • Khanna, Rajnish; Kikis, Elise A.; Quail, Peter H.
  • Plant Physiology, Vol. 133, Issue 4
  • DOI: 10.1104/pp.103.030007

Near-optimal probabilistic RNA-seq quantification
journal, April 2016

  • Bray, Nicolas L.; Pimentel, Harold; Melsted, Páll
  • Nature Biotechnology, Vol. 34, Issue 5
  • DOI: 10.1038/nbt.3519

JTK_CYCLE: An Efficient Nonparametric Algorithm for Detecting Rhythmic Components in Genome-Scale Data Sets
journal, September 2010

  • Hughes, Michael E.; Hogenesch, John B.; Kornacker, Karl
  • Journal of Biological Rhythms, Vol. 25, Issue 5
  • DOI: 10.1177/0748730410379711

Global Profiling of Rice and Poplar Transcriptomes Highlights Key Conserved Circadian-Controlled Pathways and cis-Regulatory Modules
journal, June 2011


Complexity in the Wiring and Regulation of Plant Circadian Networks
journal, August 2012


Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield
journal, March 2017

  • Lu, Sijia; Zhao, Xiaohui; Hu, Yilong
  • Nature Genetics, Vol. 49, Issue 5
  • DOI: 10.1038/ng.3819

Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants
journal, June 2009


LUX ARRHYTHMO Encodes a Nighttime Repressor of Circadian Gene Expression in the Arabidopsis Core Clock
journal, January 2011


Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana
journal, June 2015

  • Wang, Zhen; Casas-Mollano, Juan Armando; Xu, Jianping
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 27
  • DOI: 10.1073/pnas.1423325112