DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes

Abstract

Silicon-graphite (Si-Gr) electrodes typically contain lithiated carboxylates as polymer binders that are introduced through aqueous processing. Li-ion cells with such electrodes show significantly faster capacity fade than cells with graphite (Gr) electrodes. Here we examine the causes for capacity loss in Si-Gr cells containing LiPF6-based electrolytes. The presence of SiOxFy in the Si-Gr electrode, fluorophosphate species in the electrolyte, and silica on the positive electrode indicates the crucial role of the hydrolytic cycle. In particular, HF acid that is generated through LiPF6 hydrolysis corrodes Si particles. As it reacts, the released water re-enters the cycle. We trace the moisture initiating this detrimental cycle to the hydration water in the lithiated binders that cannot be fully removed by thermal treatment. The rate of HF corrosion can be reduced through the use of electrolyte additives. For the fluoroethylene carbonate (FEC) additive, the improved performance arises from changes to the solid electrolyte interphase (SEI) that serves as a barrier against HF attack. Here, we propose that the greater extent of polymer cross-linking, that gives FEC-derived SEI elastomer properties, slows down HF percolation through this SEI membrane and inhibits the formation of deep cracks through which HF can access and degrade the Si surface.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [2]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Div.
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Div.; KTH Royal Institute of Technology, Stockholm (Sweden)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1405319
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 121; Journal Issue: 38; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; NMR; XPS; electrochemistry; hydrolysis; lithium ion battery; polymer binder; silicon electrode

Citation Formats

Bareno, Javier, Shkrob, Ilya A., Gilbert, James A., Klett, Matilda, and Abraham, Daniel P. Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes. United States: N. p., 2017. Web. doi:10.1021/acs.jpcc.7b06118.
Bareno, Javier, Shkrob, Ilya A., Gilbert, James A., Klett, Matilda, & Abraham, Daniel P. Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes. United States. https://doi.org/10.1021/acs.jpcc.7b06118
Bareno, Javier, Shkrob, Ilya A., Gilbert, James A., Klett, Matilda, and Abraham, Daniel P. Wed . "Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes". United States. https://doi.org/10.1021/acs.jpcc.7b06118. https://www.osti.gov/servlets/purl/1405319.
@article{osti_1405319,
title = {Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes},
author = {Bareno, Javier and Shkrob, Ilya A. and Gilbert, James A. and Klett, Matilda and Abraham, Daniel P.},
abstractNote = {Silicon-graphite (Si-Gr) electrodes typically contain lithiated carboxylates as polymer binders that are introduced through aqueous processing. Li-ion cells with such electrodes show significantly faster capacity fade than cells with graphite (Gr) electrodes. Here we examine the causes for capacity loss in Si-Gr cells containing LiPF6-based electrolytes. The presence of SiOxFy in the Si-Gr electrode, fluorophosphate species in the electrolyte, and silica on the positive electrode indicates the crucial role of the hydrolytic cycle. In particular, HF acid that is generated through LiPF6 hydrolysis corrodes Si particles. As it reacts, the released water re-enters the cycle. We trace the moisture initiating this detrimental cycle to the hydration water in the lithiated binders that cannot be fully removed by thermal treatment. The rate of HF corrosion can be reduced through the use of electrolyte additives. For the fluoroethylene carbonate (FEC) additive, the improved performance arises from changes to the solid electrolyte interphase (SEI) that serves as a barrier against HF attack. Here, we propose that the greater extent of polymer cross-linking, that gives FEC-derived SEI elastomer properties, slows down HF percolation through this SEI membrane and inhibits the formation of deep cracks through which HF can access and degrade the Si surface.},
doi = {10.1021/acs.jpcc.7b06118},
journal = {Journal of Physical Chemistry. C},
number = 38,
volume = 121,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

Li-alloy based anode materials for Li secondary batteries
journal, January 2010

  • Park, Cheol-Min; Kim, Jae-Hun; Kim, Hansu
  • Chemical Society Reviews, Vol. 39, Issue 8, p. 3115-3141
  • DOI: 10.1039/b919877f

Silicon-based materials as high capacity anodes for next generation lithium ion batteries
journal, December 2014


Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration
journal, April 2016


SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders
journal, January 2015

  • Jaumann, Tony; Balach, Juan; Klose, Markus
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 38
  • DOI: 10.1039/C5CP03672K

Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study
journal, June 2013

  • Philippe, Bertrand; Dedryvère, Rémi; Gorgoi, Mihaela
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja403082s

Role of the LiPF 6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study
journal, January 2013

  • Philippe, Bertrand; Dedryvère, Rémi; Gorgoi, Mihaela
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm303399v

Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy
journal, February 2012

  • Philippe, Bertrand; Dedryvère, Rémi; Allouche, Joachim
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm2034195

Influence of inactive electrode components on degradation phenomena in nano-Si electrodes for Li-ion batteries
journal, September 2016


The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes
journal, August 2015


Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
journal, June 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b02882

Elucidating the Surface Reactions of an Amorphous Si Thin Film as a Model Electrode for Li-Ion Batteries
journal, October 2016

  • Ferraresi, Giulio; Czornomaz, Lukas; Villevieille, Claire
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 43
  • DOI: 10.1021/acsami.6b10929

Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O
journal, January 2005


Decomposition of LiPF 6 in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry
journal, January 2016

  • Guéguen, Aurélie; Streich, Daniel; He, Minglong
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0981606jes

Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries
journal, January 2005

  • Campion, Christopher L.; Li, Wentao; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 152, Issue 12
  • DOI: 10.1149/1.2083267

Additives for Stabilizing LiPF[sub 6]-Based Electrolytes Against Thermal Decomposition
journal, January 2005

  • Li, Wentao; Campion, Christopher; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 152, Issue 7
  • DOI: 10.1149/1.1926651

The Impact of Intentionally Added Water to the Electrolyte of Li-ion Cells: I. Cells with Graphite Negative Electrodes
journal, January 2013

  • Burns, J. C.; Sinha, N. N.; Jain, Gaurav
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.101311jes

Adsorbed Water on Nano-Silicon Powder and Its Effects on Charge and Discharge Characteristics as Anode in Lithium-Ion Batteries
journal, October 2016

  • Yoshida, Shuhei; Masuo, Yuta; Shibata, Daisuke
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.01111701jes

Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid
journal, October 2010

  • Magasinski, Alexandre; Zdyrko, Bogdan; Kovalenko, Igor
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 11
  • DOI: 10.1021/am100871y

Electrochemical lithiation performance and characterization of silicon–graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders
journal, January 2015

  • Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 5
  • DOI: 10.1039/C4CP04939J

In Situ Observation and Long-Term Reactivity of Si/C/CMC Composites Electrodes for Li-Ion Batteries
journal, January 2011

  • Bridel, J-S.; Azaïs, T.; Morcrette, M.
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3581024

Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries
journal, August 2015

  • Young, Benjamin T.; Heskett, David R.; Nguyen, Cao Cuong
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 36
  • DOI: 10.1021/acsami.5b04845

Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation
journal, November 2016


Performance of Full Cells Containing Carbonate-Based LiFSI Electrolytes and Silicon-Graphite Negative Electrodes
journal, December 2015

  • Trask, Stephen E.; Pupek, Krzysztof Z.; Gilbert, James A.
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0981602jes

Layered Oxide, Graphite and Silicon-Graphite Electrodes for Lithium-Ion Cells: Effect of Electrolyte Composition and Cycling Windows
journal, October 2016

  • Klett, Matilda; Gilbert, James A.; Pupek, Krzysztof Z.
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0131701jes

Electrode Behavior RE-Visited: Monitoring Potential Windows, Capacity Loss, and Impedance Changes in Li 1.03 (Ni 0.5 Co 0.2 Mn 0.3 ) 0.97 O 2 /Silicon-Graphite Full Cells
journal, January 2016

  • Klett, Matilda; Gilbert, James A.; Trask, Stephen E.
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0271606jes

Poly(acrylic acid) (PAA) XPS Reference Core Level and Energy Loss Spectra
journal, December 2005

  • Louette, Pierre; Bodino, Frederic; Pireaux, Jean-Jacques
  • Surface Science Spectra, Vol. 12, Issue 1
  • DOI: 10.1116/11.20050905

Syntheses and Characterization of Lithium Alkyl Mono- and Dicarbonates as Components of Surface Films in Li-Ion Batteries
journal, March 2006

  • Xu, Kang; Zhuang, Guorong V.; Allen, Jan L.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 15
  • DOI: 10.1021/jp0601522

Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in 1.2 M LiPF 6 /EC:EMC Electrolyte
journal, September 2005

  • Zhuang, Guorong V.; Xu, Kang; Yang, Hui
  • The Journal of Physical Chemistry B, Vol. 109, Issue 37
  • DOI: 10.1021/jp052474w

Impact of Selected LiPF 6 Hydrolysis Products on the High Voltage Stability of Lithium-Ion Battery Cells
journal, November 2016

  • Wagner, Ralf; Korth, Martin; Streipert, Benjamin
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 45
  • DOI: 10.1021/acsami.6b09164

Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products
journal, December 2015


Cycling Behavior of NCM523/Graphite Lithium-Ion Cells in the 3–4.4 V Range: Diagnostic Studies of Full Cells and Harvested Electrodes
journal, September 2016

  • Gilbert, James A.; Bareño, Javier; Spila, Timothy
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0081701jes

Hydration of poly(acrylic acid) lithium salts
journal, January 1980

  • Hiraoka, Kyoko; Yokoyama, Tetsuo
  • Polymer Bulletin, Vol. 3, Issue 4
  • DOI: 10.1007/BF00291961

Hydration of poly(acrylic acid) sodium salts
journal, February 1980

  • Hiraoka, Kyoko; Yokoyama, Tetsuo
  • Polymer Bulletin, Vol. 2, Issue 3
  • DOI: 10.1007/BF00254582

Hydration of poly(acrylic acid) potassium salts
journal, May 1980

  • Hiraoka, Kyoko; Gotanda, Masatoshi; Yokoyama, Tetsuo
  • Polymer Bulletin, Vol. 2, Issue 9
  • DOI: 10.1007/BF00263035

Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: Part 2—Sodium and potassium salts
journal, January 1990


Thermal properties of polyacrylic acid
journal, January 1975


Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: Part 1—Poly(acrylic acid)
journal, January 1990


Long-Term Lithium-Ion Battery Performance Improvement via Ultraviolet Light Treatment of the Graphite Anode
journal, January 2016

  • An, Seong Jin; Li, Jianlin; Sheng, Yangping
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0171614jes

A Novel Fluoride Process for Producing TiO2 from Titaniferous Ore
journal, January 1995

  • Pong, Teresa K.; Besida, John; O'Donnell, Thomas A.
  • Industrial & Engineering Chemistry Research, Vol. 34, Issue 1
  • DOI: 10.1021/ie00040a033

Lithium-Ion Batteries Working at 85°C: Aging Phenomena and Electrode/Electrolyte Interfaces Studied by XPS
journal, January 2012

  • Bodenes, Lucille; Dedryvère, Rémi; Martinez, Hervé
  • Journal of The Electrochemical Society, Vol. 159, Issue 10
  • DOI: 10.1149/2.061210jes

A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells
journal, January 2011

  • Smith, A. J.; Burns, J. C.; Zhao, Xuemei
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3557892

Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction
journal, December 2012

  • Pinson, Matthew B.; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.044302jes

Aging mechanism in Li ion cells and calendar life predictions
journal, July 2001


Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells
journal, January 2004

  • Ploehn, Harry J.; Ramadass, Premanand; White, Ralph E.
  • Journal of The Electrochemical Society, Vol. 151, Issue 3
  • DOI: 10.1149/1.1644601

What Makes Fluoroethylene Carbonate Different?
journal, June 2015

  • Shkrob, Ilya A.; Wishart, James F.; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 27
  • DOI: 10.1021/acs.jpcc.5b03591

Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically Induced Polymerization of Ethylene Carbonate
journal, September 2013

  • Shkrob, Ilya A.; Zhu, Ye; Marin, Timothy W.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 38, p. 19270-19279
  • DOI: 10.1021/jp406273p

Allotropic Control: How Certain Fluorinated Carbonate Electrolytes Protect Aluminum Current Collectors by Promoting the Formation of Insoluble Coordination Polymers
journal, August 2016

  • Shkrob, Ilya A.; Pupek, Krzysztof Z.; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 33
  • DOI: 10.1021/acs.jpcc.6b05241

On the Electrochemical Behavior of Aluminum Electrodes in Nonaqueous Electrolyte Solutions of Lithium Salts
journal, January 2010

  • Markovsky, Boris; Amalraj, Francis; Gottlieb, Hugo E.
  • Journal of The Electrochemical Society, Vol. 157, Issue 4
  • DOI: 10.1149/1.3294774

Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance
journal, January 2000

  • Yang, Haesik; Kwon, Kyungjung; Devine, Thomas M.
  • Journal of The Electrochemical Society, Vol. 147, Issue 12
  • DOI: 10.1149/1.1394077

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Works referencing / citing this record:

Lithium ion car batteries: Present analysis and future predictions
journal, February 2019

  • Arambarri, James; Hayden, James; Elkurdy, Mostafa
  • Environmental Engineering Research, Vol. 24, Issue 4
  • DOI: 10.4491/eer.2018.383

Integration of Graphite and Silicon Anodes for the Commercialization of High‐Energy Lithium‐Ion Batteries
journal, January 2020

  • Chae, Sujong; Choi, Seong‐Hyeon; Kim, Namhyung
  • Angewandte Chemie International Edition, Vol. 59, Issue 1
  • DOI: 10.1002/anie.201902085

Resistance Growth in Lithium-Ion Pouch Cells with LiNi 0.80 Co 0.15 Al 0.05 O 2 Positive Electrodes and Proposed Mechanism for Voltage Dependent Charge-Transfer Resistance
journal, January 2019

  • Weber, Rochelle; Louli, A. J.; Plucknett, K. P.
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0361910jes

Graphit‐ und‐Silicium‐Anoden für Lithiumionen‐ Hochenergiebatterien
journal, October 2019

  • Chae, Sujong; Choi, Seong‐Hyeon; Kim, Namhyung
  • Angewandte Chemie, Vol. 132, Issue 1
  • DOI: 10.1002/ange.201902085

Rapid coating of asphalt to prepare carbon-encapsulated composites of nano-silicon and graphite for lithium battery anodes
journal, December 2019


Operando Quantification of (De)Lithiation Behavior of Silicon-Graphite Blended Electrodes for Lithium-Ion Batteries
journal, January 2019

  • Yao, Koffi P. C.; Okasinski, John S.; Kalaga, Kaushik
  • Advanced Energy Materials, Vol. 9, Issue 8
  • DOI: 10.1002/aenm.201803380