DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project

Abstract

Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [12];  [13];  [14];  [15];  [15]; ORCiD logo [16]; ORCiD logo [17];  [18];  [18] more »;  [19];  [20];  [21];  [22];  [16];  [23]; ORCiD logo [16];  [2];  [24];  [25]; ORCiD logo [16];  [26];  [27];  [15] « less
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, Climate Change Science Inst.
  2. Univ. of Guelph, ON (Canada). Dept. of Integrative Biology
  3. Texas Tech Univ., Lubbock, TX (United States). Dept. of Biological Sciences
  4. Swedish Univ. of Agricultural Sciences (SLU), Uppsala (Sweden). Dept. of Ecology
  5. Univ. of Western Ontario, London, ON (Canada). Dept. of Biology
  6. Queen Mary Univ. of London (United Kingdom). School of Geography
  7. Union College, Schenectady, NY (United States). Dept. of Biological Sciences
  8. Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Biology
  9. Univ. of Maryland Center of Environmental Science, Frostburg, MD (United States). Applachian Lab.
  10. HudsonAlpha Inst. of Biotechnology, Huntsville, AL (United States); USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)
  11. Umea Univ. (Sweden). Dept. of Ecology and Environmental Science
  12. Univ. of Alaska, Fairbanks, AK (United States). Inst. of Arctic Biology
  13. Norwegian Univ. of Science and Technology, Trondheim (Norway). NTNU Univ. Museum
  14. Univ. of Zurich (Switzerland). Dept. of Systematic and Evolutionary Botany
  15. Duke Univ., Durham, NC (United States). Dept. of Biology
  16. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division
  17. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Climate Change Science Inst., Environmental Sciences Division
  18. Georgia Inst. of Technology, Atlanta, GA (United States). Schools of Biology and Earth and Atmospheric Sciences
  19. Uppsala Univ. (Sweden). Dept. of Ecology and Genetics
  20. Wageningen Univ. (Netherlands). Plant Ecology and Nature Conservation Group, Dept. of Environmental Sciences
  21. Univ. of Eastern Finland, Joensuu (Finland). School of Forest Sciences
  22. Max Planck Inst. for Evolutionary Biology, Plon (Germany)
  23. Florida Atlantic Univ., Davie, FL (United States). Dept. of Biological Sciences
  24. Swedish Univ. of Agricultural Sciences (SLU), Umea (Sweden). Dept. of Forest Ecology and Management
  25. Univ. of Tennessee, Knoxville, TN (United States). Dept of Plant Sciences
  26. Northern Research Station, Hougton, MI (United States). U.S. Forest Service
  27. Queen Mary Univ., London (United Kingdom). School of Biological and Chemical Sciences
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF)
OSTI Identifier:
1407984
Alternate Identifier(s):
OSTI ID: 1405197; OSTI ID: 1616055
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231; #EF-0905606
Resource Type:
Accepted Manuscript
Journal Name:
New Phytologist
Additional Journal Information:
Journal Volume: NA; Journal Issue: NA; Journal ID: ISSN 0028-646X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 60 APPLIED LIFE SCIENCES; ecological genomics; ecosystem engineering; evolutionary genetics; genome sequencing; niche construction; peatlands; Sphagnome; Sphagnum

Citation Formats

Weston, David J., Turetsky, Merritt R., Johnson, Matthew G., Granath, Gustaf, Lindo, Zoë, Belyea, Lisa R., Rice, Steven K., Hanson, David T., Engelhardt, Katharina A. M., Schmutz, Jeremy, Dorrepaal, Ellen, Euskirchen, Eugénie S., Stenøien, Hans K., Szövényi, Péter, Jackson, Michelle, Piatkowski, Bryan T., Muchero, Wellington, Norby, Richard J., Kostka, Joel E., Glass, Jennifer B., Rydin, Håkan, Limpens, Juul, Tuittila, Eeva-Stiina, Ullrich, Kristian K., Carrell, Alyssa, Benscoter, Brian W., Chen, Jin-Gui, Oke, Tobi A., Nilsson, Mats B., Ranjan, Priya, Jacobson, Daniel, Lilleskov, Erik A., Clymo, R. S., and Shaw, A. Jonathan. The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project. United States: N. p., 2017. Web. doi:10.1111/nph.14860.
Weston, David J., Turetsky, Merritt R., Johnson, Matthew G., Granath, Gustaf, Lindo, Zoë, Belyea, Lisa R., Rice, Steven K., Hanson, David T., Engelhardt, Katharina A. M., Schmutz, Jeremy, Dorrepaal, Ellen, Euskirchen, Eugénie S., Stenøien, Hans K., Szövényi, Péter, Jackson, Michelle, Piatkowski, Bryan T., Muchero, Wellington, Norby, Richard J., Kostka, Joel E., Glass, Jennifer B., Rydin, Håkan, Limpens, Juul, Tuittila, Eeva-Stiina, Ullrich, Kristian K., Carrell, Alyssa, Benscoter, Brian W., Chen, Jin-Gui, Oke, Tobi A., Nilsson, Mats B., Ranjan, Priya, Jacobson, Daniel, Lilleskov, Erik A., Clymo, R. S., & Shaw, A. Jonathan. The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project. United States. https://doi.org/10.1111/nph.14860
Weston, David J., Turetsky, Merritt R., Johnson, Matthew G., Granath, Gustaf, Lindo, Zoë, Belyea, Lisa R., Rice, Steven K., Hanson, David T., Engelhardt, Katharina A. M., Schmutz, Jeremy, Dorrepaal, Ellen, Euskirchen, Eugénie S., Stenøien, Hans K., Szövényi, Péter, Jackson, Michelle, Piatkowski, Bryan T., Muchero, Wellington, Norby, Richard J., Kostka, Joel E., Glass, Jennifer B., Rydin, Håkan, Limpens, Juul, Tuittila, Eeva-Stiina, Ullrich, Kristian K., Carrell, Alyssa, Benscoter, Brian W., Chen, Jin-Gui, Oke, Tobi A., Nilsson, Mats B., Ranjan, Priya, Jacobson, Daniel, Lilleskov, Erik A., Clymo, R. S., and Shaw, A. Jonathan. Fri . "The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project". United States. https://doi.org/10.1111/nph.14860. https://www.osti.gov/servlets/purl/1407984.
@article{osti_1407984,
title = {The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project},
author = {Weston, David J. and Turetsky, Merritt R. and Johnson, Matthew G. and Granath, Gustaf and Lindo, Zoë and Belyea, Lisa R. and Rice, Steven K. and Hanson, David T. and Engelhardt, Katharina A. M. and Schmutz, Jeremy and Dorrepaal, Ellen and Euskirchen, Eugénie S. and Stenøien, Hans K. and Szövényi, Péter and Jackson, Michelle and Piatkowski, Bryan T. and Muchero, Wellington and Norby, Richard J. and Kostka, Joel E. and Glass, Jennifer B. and Rydin, Håkan and Limpens, Juul and Tuittila, Eeva-Stiina and Ullrich, Kristian K. and Carrell, Alyssa and Benscoter, Brian W. and Chen, Jin-Gui and Oke, Tobi A. and Nilsson, Mats B. and Ranjan, Priya and Jacobson, Daniel and Lilleskov, Erik A. and Clymo, R. S. and Shaw, A. Jonathan},
abstractNote = {Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.},
doi = {10.1111/nph.14860},
journal = {New Phytologist},
number = NA,
volume = NA,
place = {United States},
year = {Fri Oct 27 00:00:00 EDT 2017},
month = {Fri Oct 27 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 44 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates: Minimum stomatal conductance
journal, September 2014

  • Reuning, Gretchen A.; Bauerle, William L.; Mullen, Jack L.
  • Plant, Cell & Environment, Vol. 38, Issue 4
  • DOI: 10.1111/pce.12429

Methanotrophic symbionts provide carbon for photosynthesis in peat bogs
journal, August 2005

  • Raghoebarsing, Ashna A.; Smolders, Alfons J. P.; Schmid, Markus C.
  • Nature, Vol. 436, Issue 7054
  • DOI: 10.1038/nature03802

The Biology of Peatlands
book, January 2013


Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems
journal, August 2010

  • Kip, Nardy; van Winden, Julia F.; Pan, Yao
  • Nature Geoscience, Vol. 3, Issue 9
  • DOI: 10.1038/ngeo939

Size-Correction and Principal Components for Interspecific Comparative Studies
journal, December 2009


Peat Moss–Like Vegetative Remains from Ordovician Carbonates
journal, July 2016

  • Cardona-Correa, Christopher; Piotrowski, Michael J.; Knack, Jennifer J.
  • International Journal of Plant Sciences, Vol. 177, Issue 6
  • DOI: 10.1086/686242

Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods: Phylogenetic inertia
journal, October 2002


Soil Layers in Mires: Function and Terminology
journal, June 1978


The influence of water content and leaf anatomy on carbon isotope discrimination and photosynthesis in Sphagnum
journal, January 1996


A safe operating space for humanity
journal, September 2009

  • Rockström, Johan; Steffen, Will; Noone, Kevin
  • Nature, Vol. 461, Issue 7263
  • DOI: 10.1038/461472a

Organisms as Ecosystem Engineers
journal, April 1994

  • Jones, Clive G.; Lawton, John H.; Shachak, Moshe
  • Oikos, Vol. 69, Issue 3
  • DOI: 10.2307/3545850

How Sphagnum bogs down other plants
journal, July 1995


Methanotrophy induces nitrogen fixation during peatland development
journal, December 2013

  • Larmola, T.; Leppanen, S. M.; Tuittila, E. -S.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 2
  • DOI: 10.1073/pnas.1314284111

An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming
journal, November 2015

  • Jassey, Vincent E. J.; Signarbieux, Constant; Hättenschwiler, Stephan
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep16931

Climate change, adaptation, and phenotypic plasticity: the problem and the evidence
journal, January 2014

  • Merilä, Juha; Hendry, Andrew P.
  • Evolutionary Applications, Vol. 7, Issue 1
  • DOI: 10.1111/eva.12137

The Ecology of Sphagnum
book, January 1982


Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation
journal, February 2016


Photosynthesis, growth, and decay traits in Sphagnum - a multispecies comparison
journal, April 2016

  • Bengtsson, Fia; Granath, Gustaf; Rydin, Håkan
  • Ecology and Evolution, Vol. 6, Issue 10
  • DOI: 10.1002/ece3.2119

Diazotrophic methanotrophs in peatlands: the missing link?
journal, February 2015


The Sphagnum microbiome: new insights from an ancient plant lineage
journal, February 2016

  • Kostka, Joel E.; Weston, David J.; Glass, Jennifer B.
  • New Phytologist, Vol. 211, Issue 1
  • DOI: 10.1111/nph.13993

The Growth of Sphagnum: Experiments on, and Simulation of, Some Effects of Light Flux and Water-Table Depth
journal, November 1983

  • Hayward, P. M.; Clymo, R. S.
  • The Journal of Ecology, Vol. 71, Issue 3
  • DOI: 10.2307/2259597

Phylogenetic or environmental control on the elemental and organo-chemical composition of Sphagnum mosses?
journal, April 2017


The resilience and functional role of moss in boreal and arctic ecosystems: Tansley review
journal, August 2012


Global peatland dynamics since the Last Glacial Maximum: GLOBAL PEATLANDS SINCE THE LGM
journal, July 2010

  • Yu, Zicheng; Loisel, Julie; Brosseau, Daniel P.
  • Geophysical Research Letters, Vol. 37, Issue 13
  • DOI: 10.1029/2010GL043584

Ecological genomics and process modeling of local adaptation to climate
journal, April 2014

  • Weinig, Cynthia; Ewers, Brent E.; Welch, Stephen M.
  • Current Opinion in Plant Biology, Vol. 18
  • DOI: 10.1016/j.pbi.2014.02.007

Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling?
journal, June 2010

  • Shaw, A. Jonathan; Devos, Nicolas; Cox, Cymon J.
  • Molecular Phylogenetics and Evolution, Vol. 55, Issue 3
  • DOI: 10.1016/j.ympev.2010.01.020

Trade-offs in resource allocation among moss species control decomposition in boreal peatlands
journal, November 2008


Evolution of niche preference in Sphagnum peat mosses : EVOLUTION OF NICHE PREFERENCE
journal, December 2014

  • Johnson, Matthew G.; Granath, Gustaf; Tahvanainen, Teemu
  • Evolution, Vol. 69, Issue 1
  • DOI: 10.1111/evo.12547

Ecological consequences of phenotypic plasticity
journal, December 2005

  • Miner, Benjamin G.; Sultan, Sonia E.; Morgan, Steven G.
  • Trends in Ecology & Evolution, Vol. 20, Issue 12
  • DOI: 10.1016/j.tree.2005.08.002

Revealing plant cryptotypes: defining meaningful phenotypes among infinite traits
journal, April 2015


Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss
journal, May 2012


Next-generation dynamic global vegetation models: learning from community ecology
journal, March 2013

  • Scheiter, Simon; Langan, Liam; Higgins, Steven I.
  • New Phytologist, Vol. 198, Issue 3
  • DOI: 10.1111/nph.12210

Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle
journal, November 2011

  • Bragina, Anastasia; Berg, Christian; Cardinale, Massimiliano
  • The ISME Journal, Vol. 6, Issue 4
  • DOI: 10.1038/ismej.2011.151

An enzymic 'latch' on a global carbon store
journal, January 2001

  • Freeman, Chris; Ostle, Nick; Kang, Hojeong
  • Nature, Vol. 409, Issue 6817
  • DOI: 10.1038/35051650

Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss)
journal, June 2016

  • Jonathan Shaw, A.; Devos, Nicolas; Liu, Yang
  • Annals of Botany, Vol. 118, Issue 2
  • DOI: 10.1093/aob/mcw086

Long-distance dispersal and barriers shape genetic structure of peatmosses ( Sphagnum ) across the Northern Hemisphere
journal, February 2016

  • Kyrkjeeide, Magni Olsen; Hassel, Kristian; Flatberg, Kjell Ivar
  • Journal of Biogeography, Vol. 43, Issue 6
  • DOI: 10.1111/jbi.12716

Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change
journal, March 2013

  • Lindo, Zoë; Nilsson, Marie-Charlotte; Gundale, Michael J.
  • Global Change Biology, Vol. 19, Issue 7
  • DOI: 10.1111/gcb.12175

A framework for community and ecosystem genetics: from genes to ecosystems
journal, July 2006

  • Whitham, Thomas G.; Bailey, Joseph K.; Schweitzer, Jennifer A.
  • Nature Reviews Genetics, Vol. 7, Issue 7
  • DOI: 10.1038/nrg1877

An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions
journal, June 2013

  • Haudry, Annabelle; Platts, Adrian E.; Vello, Emilio
  • Nature Genetics, Vol. 45, Issue 8
  • DOI: 10.1038/ng.2684

Analyses of transcriptome sequences reveal multiple ancient large‐scale duplication events in the ancestor of Sphagnopsida (Bryophyta)
journal, February 2016

  • Devos, Nicolas; Szövényi, Péter; Weston, David J.
  • New Phytologist, Vol. 211, Issue 1
  • DOI: 10.1111/nph.13887

Atmospheric nitrogen deposition promotes carbon loss from peat bogs
journal, December 2006

  • Bragazza, L.; Freeman, C.; Jones, T.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 51
  • DOI: 10.1073/pnas.0606629104

Clonal structure and fertility in a sympatric population of the peat mosses Sphagnum rubellum and Sphagnum capillifolium
journal, September 1996

  • Cronberg, Nlls
  • Canadian Journal of Botany, Vol. 74, Issue 9
  • DOI: 10.1139/b96-167

Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro
journal, April 2010


Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism
journal, July 2016

  • Novikova, Polina Yu; Hohmann, Nora; Nizhynska, Viktoria
  • Nature Genetics, Vol. 48, Issue 9
  • DOI: 10.1038/ng.3617

S phagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host-microbiome interactions on understanding ecosystem function
journal, December 2014

  • Weston, David J.; Timm, Collin M.; Walker, Anthony P.
  • Plant, Cell & Environment, Vol. 38, Issue 9
  • DOI: 10.1111/pce.12458

Community and Ecosystem Genetics: a Consequence of the Extended Phenotype
journal, March 2003


How Sphagnum bogs down other plants
journal, July 1995


Clonal in vitro propagation of peat mosses (Sphagnum L.) as novel green resources for basic and applied research
journal, November 2014

  • Beike, Anna K.; Spagnuolo, Valeria; Lüth, Volker
  • Plant Cell, Tissue and Organ Culture (PCTOC), Vol. 120, Issue 3
  • DOI: 10.1007/s11240-014-0658-2

Pattern of Leaf Damage Affects Fitness of the Annual Plant Raphanus Sativus (Brassicaceae)
journal, October 1993

  • Mauricio, Rodney; Bowers, M. Deane; Bazzaz, F. A.
  • Ecology, Vol. 74, Issue 7
  • DOI: 10.2307/1940852

Niche diversification of Sphagnum relative to environmental factors in northern Minnesota peatlands
journal, July 1984

  • Vitt, Dale H.; Slack, Nancy G.
  • Canadian Journal of Botany, Vol. 62, Issue 7
  • DOI: 10.1139/b84-192

Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism
text, January 2016

  • Novikova, Polina Yu; Hohmann, Nora; Nizhynska, Viktoria
  • Nature Publishing Group
  • DOI: 10.5167/uzh-125188

Analyses of transcriptome sequences reveal multiple ancient large-scale duplication events in the ancestor of Sphagnopsida (Bryophyta)
text, January 2016

  • Devos, Nicolas; Szövényi, Peter; Weston, David J.
  • Wiley-Blackwell Publishing, Inc.
  • DOI: 10.5167/uzh-131191

Works referencing / citing this record:

Sphagnum Species Modulate their Phenolic Profiles and Mycorrhizal Colonization of Surrounding Andromeda polifolia along Peatland Microhabitats
journal, October 2018

  • Chiapusio, Geneviève; Jassey, Vincent E. J.; Bellvert, Floriant
  • Journal of Chemical Ecology, Vol. 44, Issue 12
  • DOI: 10.1007/s10886-018-1023-4

Development of a method for protonema proliferation of peat moss ( Sphagnum squarrosum ) through regeneration analysis
journal, August 2018

  • Zhao, Wenqian; Li, Zeling; Hu, Yongyue
  • New Phytologist, Vol. 221, Issue 2
  • DOI: 10.1111/nph.15394

Sphagnum divinum ( sp. nov .) and S. medium Limpr. and their relationship to S. magellanicum Brid.
journal, May 2018


Range change evolution of peat mosses ( Sphagnum ) within and between climate zones
journal, November 2018

  • Shaw, A. Jonathan; Carter, Benjamin E.; Aguero, Blanka
  • Global Change Biology, Vol. 25, Issue 1
  • DOI: 10.1111/gcb.14485

Cross-kingdom signalling regulates spore germination in the moss Physcomitrella patens
journal, February 2020


Cross-kingdom signalling regulates spore germination in the moss Physcomitrella patens
journal, February 2020