Direct evidence for EMIC wave scattering of relativistic electrons in space: EMIC-Driven Electron Losses in Space
Abstract
Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. In conclusion, by comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth’s outer radiation belt.
- Authors:
-
- Univ. of California, Los Angeles, CA (United States). Dept. of Atmospheric and Oceanic Sciences; Univ. of California, Los Angeles, CA (United States). Dept. of Earth, Planetary, and Space Sciences and Inst. of Geophysics and Space Physics
- Univ. of California, Los Angeles, CA (United States). Dept. of Atmospheric and Oceanic Sciences
- Univ. of California, Los Angeles, CA (United States). Dept. of Earth, Planetary, and Space Sciences and Inst. of Geophysics and Space Physics
- Univ. of Texas at Dallas, Richardson, TX (United States). Dept. of Physics
- Univ. of Iowa, Iowa City, IA (United States). Dept. of Physics and Astronomy
- Univ. of Colorado, Boulder, CO (United States). Lab. for Atmospheric and Space Research
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Consortium, Los Alamos, NM (United States). Space Sciences Division
- Univ. of New Hampshire, Durham, NH (United States). Inst. for the Study of Earth, Oceans, and Space
- Aerospace Corporation, Los Angeles, CA (United States)
- Publication Date:
- Research Org.:
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- Sponsoring Org.:
- National Aeronautics and Space Administration (NASA); USDOE
- OSTI Identifier:
- 1402611
- Report Number(s):
- LA-UR-16-23135
Journal ID: ISSN 2169-9380; TRN: US1703009
- Grant/Contract Number:
- AC52-06NA25396; 967399; 921647; NAS5-01072; NNX15AI96G; NNX15AF61G; NNX11AR64G; NNX13AI61G; NNX14AI18G; FA9550-15-1-0158; AGS 1564510
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Journal of Geophysical Research. Space Physics
- Additional Journal Information:
- Journal Volume: 121; Journal Issue: 7; Journal ID: ISSN 2169-9380
- Publisher:
- American Geophysical Union
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 58 GEOSCIENCES; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Heliospheric and Magnetospheric Physics; EMIC waves; relativistic electron loss; wave-particle interaction; Fokker-Planck equation; electron precipitation; equatorial pitch angle distribution
Citation Formats
Zhang, X. -J., Li, W., Ma, Q., Thorne, R. M., Angelopoulos, V., Bortnik, J., Chen, L., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Baker, D. N., Reeves, G. D., Spence, H. E., Blake, J. B., and Fennell, J. F. Direct evidence for EMIC wave scattering of relativistic electrons in space: EMIC-Driven Electron Losses in Space. United States: N. p., 2016.
Web. doi:10.1002/2016JA022521.
Zhang, X. -J., Li, W., Ma, Q., Thorne, R. M., Angelopoulos, V., Bortnik, J., Chen, L., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Baker, D. N., Reeves, G. D., Spence, H. E., Blake, J. B., & Fennell, J. F. Direct evidence for EMIC wave scattering of relativistic electrons in space: EMIC-Driven Electron Losses in Space. United States. https://doi.org/10.1002/2016JA022521
Zhang, X. -J., Li, W., Ma, Q., Thorne, R. M., Angelopoulos, V., Bortnik, J., Chen, L., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Baker, D. N., Reeves, G. D., Spence, H. E., Blake, J. B., and Fennell, J. F. Fri .
"Direct evidence for EMIC wave scattering of relativistic electrons in space: EMIC-Driven Electron Losses in Space". United States. https://doi.org/10.1002/2016JA022521. https://www.osti.gov/servlets/purl/1402611.
@article{osti_1402611,
title = {Direct evidence for EMIC wave scattering of relativistic electrons in space: EMIC-Driven Electron Losses in Space},
author = {Zhang, X. -J. and Li, W. and Ma, Q. and Thorne, R. M. and Angelopoulos, V. and Bortnik, J. and Chen, L. and Kletzing, C. A. and Kurth, W. S. and Hospodarsky, G. B. and Baker, D. N. and Reeves, G. D. and Spence, H. E. and Blake, J. B. and Fennell, J. F.},
abstractNote = {Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. In conclusion, by comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth’s outer radiation belt.},
doi = {10.1002/2016JA022521},
journal = {Journal of Geophysical Research. Space Physics},
number = 7,
volume = 121,
place = {United States},
year = {2016},
month = {7}
}
Web of Science
Works referenced in this record:
Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes: Van Allen Probes Electron Densities
journal, February 2015
- Kurth, W. S.; De Pascuale, S.; Faden, J. B.
- Journal of Geophysical Research: Space Physics, Vol. 120, Issue 2
On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event: Effective ranges of outer belt dropouts
journal, March 2014
- Turner, D. L.; Angelopoulos, V.; Morley, S. K.
- Journal of Geophysical Research: Space Physics, Vol. 119, Issue 3
An improved dispersion relation for parallel propagating electromagnetic waves in warm plasmas: Application to electron scattering: WAVES IN WARM PLASMAS
journal, May 2013
- Chen, Lunjin; Thorne, Richard M.; Shprits, Yuri
- Journal of Geophysical Research: Space Physics, Vol. 118, Issue 5
Observational test of local proton cyclotron instability in the Earth's magnetosphere
journal, October 1996
- Anderson, B. J.; Denton, R. E.; Ho, G.
- Journal of Geophysical Research: Space Physics, Vol. 101, Issue A10
Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm: RING CURRENT DYNAMICS DURING HSS STORMS
journal, May 2012
- Jordanova, V. K.; Welling, D. T.; Zaharia, S. G.
- Journal of Geophysical Research: Space Physics, Vol. 117, Issue A9
The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth’s Radiation Belt High-Energy Particle Populations
journal, December 2012
- Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.
- Space Science Reviews, Vol. 179, Issue 1-4
Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on radiation belt electron dynamics: PLASMASPHERIC HISS PROPERTIES AND EFFECT
journal, May 2015
- Li, W.; Ma, Q.; Thorne, R. M.
- Journal of Geophysical Research: Space Physics, Vol. 120, Issue 5
Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales
journal, September 2015
- Ni, Binbin; Cao, Xing; Zou, Zhengyang
- Journal of Geophysical Research: Space Physics, Vol. 120, Issue 9
THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic pressure: THEMIS EMIC WAVE DISTRIBUTION
journal, October 2012
- Usanova, M. E.; Mann, I. R.; Bortnik, J.
- Journal of Geophysical Research: Space Physics, Vol. 117, Issue A10
POES satellite observations of EMIC-wave driven relativistic electron precipitation during 1998-2010: EMIC DRIVEN REP 1998-2010
journal, January 2013
- Carson, Bonar R.; Rodger, Craig J.; Clilverd, Mark A.
- Journal of Geophysical Research: Space Physics, Vol. 118, Issue 1
On the presence and properties of cold ions near Earth's equatorial magnetosphere: Magnetospheric cold ions
journal, March 2014
- Lee, Justin H.; Angelopoulos, Vassilis
- Journal of Geophysical Research: Space Physics, Vol. 119, Issue 3
Global distribution of EMIC waves derived from THEMIS observations: GLOBAL DISTRIBUTION OF EMIC WAVES
journal, May 2012
- Min, Kyungguk; Lee, Jeongwoo; Keika, Kunihiro
- Journal of Geophysical Research: Space Physics, Vol. 117, Issue A5
The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft
journal, June 2013
- Blake, J. B.; Carranza, P. A.; Claudepierre, S. G.
- Space Science Reviews, Vol. 179, Issue 1-4
The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
journal, June 2013
- Kletzing, C. A.; Kurth, W. S.; Acuna, M.
- Space Science Reviews, Vol. 179, Issue 1-4
Limit on stably trapped particle fluxes
journal, January 1966
- Kennel, C. F.; Petschek, H. E.
- Journal of Geophysical Research, Vol. 71, Issue 1
Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC
journal, November 1993
- Li, Xinlin; Roth, I.; Temerin, M.
- Geophysical Research Letters, Vol. 20, Issue 22
Modeling inward diffusion and slow decay of energetic electrons in the Earth's outer radiation belt: Modeling gradual diffusion processes
journal, February 2015
- Ma, Q.; Li, W.; Thorne, R. M.
- Geophysical Research Letters, Vol. 42, Issue 4
The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission
journal, October 2013
- Wygant, J. R.; Bonnell, J. W.; Goetz, K.
- Space Science Reviews, Vol. 179, Issue 1-4
New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation: QUANTIFYING RAPID E - PRECIPITATION LOSS
journal, November 2013
- Blum, L. W.; Schiller, Q.; Li, X.
- Geophysical Research Letters, Vol. 40, Issue 22
Nonlinear interaction of radiation belt electrons with electromagnetic ion cyclotron waves
journal, January 2009
- Albert, J. M.; Bortnik, J.
- Geophysical Research Letters, Vol. 36, Issue 12
Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event
journal, January 2006
- Bortnik, J.; Thorne, R. M.; O'Brien, T. P.
- Journal of Geophysical Research, Vol. 111, Issue A12
Warm plasma effects on electromagnetic ion cyclotron wave MeV electron interactions in the magnetosphere: EMIC WAVES AND MEV ELECTRONS
journal, May 2011
- Silin, I.; Mann, I. R.; Sydora, R. D.
- Journal of Geophysical Research: Space Physics, Vol. 116, Issue A5
Disappearance of plasmaspheric hiss following interplanetary shock: DISAPPEARANCE OF PLASMASPHERIC HISS
journal, May 2015
- Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang
- Geophysical Research Letters, Vol. 42, Issue 9
The controlling effect of ion temperature on EMIC wave excitation and scattering: HOT PLASMA EFFECT ON EMIC WAVES
journal, August 2011
- Chen, Lunjin; Thorne, Richard M.; Bortnik, Jacob
- Geophysical Research Letters, Vol. 38, Issue 16
The THEMIS Fluxgate Magnetometer
journal, May 2008
- Auster, H. U.; Glassmeier, K. H.; Magnes, W.
- Space Science Reviews, Vol. 141, Issue 1-4
Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere: QUASI-LINEAR DIFFUSION COEFFICIENTS
journal, August 2005
- Summers, Danny
- Journal of Geophysical Research: Space Physics, Vol. 110, Issue A8
Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations
journal, December 2014
- Li, Zan; Millan, Robyn M.; Hudson, Mary K.
- Geophysical Research Letters, Vol. 41, Issue 24
Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013: EMIC WAVE EXCITATION
journal, June 2014
- Zhang, J. -C.; Saikin, A. A.; Kistler, L. M.
- Geophysical Research Letters, Vol. 41, Issue 12
Enhanced radial transport and energization of radiation belt electrons due to drift orbit bifurcations: TRANSPORT AT DRIFT ORBIT BIFURCATIONS
journal, January 2014
- Ukhorskiy, A. Y.; Sitnov, M. I.; Millan, R. M.
- Journal of Geophysical Research: Space Physics, Vol. 119, Issue 1
Relativistic electron precipitation during magnetic storm main phase
journal, July 1971
- Thorne, R. M.; Kennel, C. F.
- Journal of Geophysical Research, Vol. 76, Issue 19
Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES
journal, January 2003
- Meredith, Nigel P.
- Journal of Geophysical Research, Vol. 108, Issue A6
Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms
journal, January 2003
- Summers, Danny
- Journal of Geophysical Research, Vol. 108, Issue A4
Acceleration and loss of relativistic electrons during geomagnetic storms: ACCELERATION AND LOSS OF RELATIVISTIC ELECTRONS
journal, May 2003
- Reeves, G. D.; McAdams, K. L.; Friedel, R. H. W.
- Geophysical Research Letters, Vol. 30, Issue 10
Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations: Usanova et al.: EMIC Waves and Relativistic Electrons
journal, March 2014
- Usanova, M. E.; Drozdov, A.; Orlova, K.
- Geophysical Research Letters, Vol. 41, Issue 5
A statistical study of EMIC waves observed by Cluster: 1. Wave properties: EMIC Wave Properties
journal, July 2015
- Allen, R. C.; Zhang, J. -C.; Kistler, L. M.
- Journal of Geophysical Research: Space Physics, Vol. 120, Issue 7
Precipitation of radiation belt electrons by EMIC waves, observed from ground and space
journal, January 2008
- Miyoshi, Y.; Sakaguchi, K.; Shiokawa, K.
- Geophysical Research Letters, Vol. 35, Issue 23
The Upgraded CARISMA Magnetometer Array in the THEMIS Era
journal, December 2008
- Mann, I. R.; Milling, D. K.; Rae, I. J.
- Space Science Reviews, Vol. 141, Issue 1-4
Electron losses from the radiation belts caused by EMIC waves
journal, November 2014
- Kersten, Tobias; Horne, Richard B.; Glauert, Sarah A.
- Journal of Geophysical Research: Space Physics, Vol. 119, Issue 11
Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms: EVOLUTION OF ENERGETIC ELECTRONS
journal, October 2007
- Li, W.; Shprits, Y. Y.; Thorne, R. M.
- Journal of Geophysical Research: Space Physics, Vol. 112, Issue A10
Relativistic electron scattering by large amplitude electromagnetic ion cyclotron waves: The role of phase bunching and trapping: ELECTRON SCATTERING BY LARGE EMIC WAVES
journal, June 2012
- Liu, Kaijun; Winske, Dan; Gary, S. Peter
- Journal of Geophysical Research: Space Physics, Vol. 117, Issue A6
Global morphology and spectral properties of EMIC waves derived from CRRES observations
journal, July 2014
- Meredith, Nigel P.; Horne, Richard B.; Kersten, Tobias
- Journal of Geophysical Research: Space Physics, Vol. 119, Issue 7
Science Objectives and Rationale for the Radiation Belt Storm Probes Mission
journal, September 2012
- Mauk, B. H.; Fox, N. J.; Kanekal, S. G.
- Space Science Reviews, Vol. 179, Issue 1-4
Outward radial diffusion driven by losses at magnetopause
journal, January 2006
- Shprits, Y. Y.; Thorne, R. M.; Friedel, R.
- Journal of Geophysical Research, Vol. 111, Issue A11
Science Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA’s Van Allen Probes Mission
journal, October 2013
- Spence, H. E.; Reeves, G. D.; Baker, D. N.
- Space Science Reviews, Vol. 179, Issue 1-4
Works referencing / citing this record:
Nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique monochromatic EMIC waves
journal, February 2017
- Wang, Geng; Su, Zhenpeng; Zheng, Huinan
- Journal of Geophysical Research: Space Physics, Vol. 122, Issue 2
Contemporaneous EMIC and whistler mode waves: Observations and consequences for MeV electron loss: SIMULTANEOUS EMIC AND WHISTLER OBSERVATIONS
journal, August 2017
- Zhang, X. -J.; Mourenas, D.; Artemyev, A. V.
- Geophysical Research Letters, Vol. 44, Issue 16
Examining Wave Vector and Minimum Cyclotron Resonant Electron Energy of EMIC Waves With Magnetospheric Multiscale Mission
journal, October 2018
- Liu, Si; Zhang, Jian; Chen, Lunjin
- Geophysical Research Letters, Vol. 45, Issue 19
Precipitation of Radiation Belt Electrons by EMIC Waves With Conjugated Observations of NOAA and Van Allen Satellites
journal, December 2018
- Yuan, Zhigang; Liu, Kun; Yu, Xiongdong
- Geophysical Research Letters, Vol. 45, Issue 23
Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity
journal, April 2019
- Capannolo, L.; Li, W.; Ma, Q.
- Journal of Geophysical Research: Space Physics
Magnetospheric Multiscale Observation of Quasiperiodic EMIC Waves Associated With Enhanced Solar Wind Pressure
journal, July 2019
- Liu, Si; Xia, Zhiyang; Chen, Lunjin
- Geophysical Research Letters, Vol. 46, Issue 13
Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth's Inner Magnetosphere
journal, June 2019
- Ma, Q.; Li, W.; Yue, C.
- Geophysical Research Letters, Vol. 46, Issue 12
Analyzing EMIC Waves in the Inner Magnetosphere Using Long‐Term Van Allen Probes Observations
journal, September 2019
- Chen, Huayue; Gao, Xinliang; Lu, Quanming
- Journal of Geophysical Research: Space Physics, Vol. 124, Issue 9
Propagation of EMIC Waves Inside the Plasmasphere: A Two‐Event Study
journal, November 2019
- Wang, G.; Zhang, T. L.; Gao, Z. L.
- Journal of Geophysical Research: Space Physics, Vol. 124, Issue 11
Storm Time Depletions of Multi‐MeV Radiation Belt Electrons Observed at Different Pitch Angles
journal, November 2019
- Drozdov, A. Y.; Aseev, N.; Effenberger, F.
- Journal of Geophysical Research: Space Physics, Vol. 124, Issue 11
Scattering of Ultra-relativistic Electrons in the Van Allen Radiation Belts Accounting for Hot Plasma Effects
journal, December 2017
- Cao, Xing; Shprits, Yuri Y.; Ni, Binbin
- Scientific Reports, Vol. 7, Issue 1
Nonlinear Landau resonance between EMIC waves and cold electrons in the inner magnetosphere
journal, April 2019
- Wang, Bin; Li, Pengyuan; Huang, Jian
- Physics of Plasmas, Vol. 26, Issue 4
On the Contribution of EMIC Waves to the Reconfiguration of the Relativistic Electron Butterfly Pitch Angle Distribution Shape on 2014 September 12—A Case Study
journal, February 2019
- Medeiros, Claudia; Souza, V. M.; Vieira, L. E. A.
- The Astrophysical Journal, Vol. 872, Issue 1