DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Silicon Photoelectrode Thermodynamics and Hydrogen Evolution Kinetics Measured by Intensity-Modulated High-Frequency Resistivity Impedance Spectroscopy

Abstract

Here, we present an impedance technique based on light intensity-modulated high-frequency resistivity (IMHFR) that provides a new way to elucidate both the thermodynamics and kinetics in complex semiconductor photoelectrodes. We apply IMHFR to probe electrode interfacial energetics on oxide-modified semiconductor surfaces frequently used to improve the stability and efficiency of photoelectrochemical water splitting systems. Combined with current density-voltage measurements, the technique quantifies the overpotential for proton reduction relative to its thermodynamic potential in Si photocathodes coated with three oxides (SiOx, TiO2, and Al2O3) and a Pt catalyst. In pH 7 electrolyte, the flatband potentials of TiO2- and Al2O3-coated Si electrodes are negative relative to samples with native SiOx, indicating that SiOx is a better protective layer against oxidative electrochemical corrosion than ALD-deposited crystalline TiO2 or Al2O3. Adding a Pt catalyst to SiOx/Si minimizes proton reduction overpotential losses but at the expense of a reduction in available energy characterized by a more negative flatband potential relative to catalyst-free SiOx/Si.

Authors:
 [1];  [1];  [2];  [1];  [1]; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States); The Univ. of Texas at Austin, Austin, TX (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1402562
Report Number(s):
NREL/JA-5900-68410
Journal ID: ISSN 1948-7185
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Volume: 8; Journal Issue: 21; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; thermodynamics; kinetics; semiconductor photoelectrodes

Citation Formats

Anderson, Nicholas C., Carroll, Gerard M., Pekarek, Ryan T., Christensen, Steven T., van de Lagemaat, Jao, and Neale, Nathan R. Silicon Photoelectrode Thermodynamics and Hydrogen Evolution Kinetics Measured by Intensity-Modulated High-Frequency Resistivity Impedance Spectroscopy. United States: N. p., 2017. Web. doi:10.1021/acs.jpclett.7b01311.
Anderson, Nicholas C., Carroll, Gerard M., Pekarek, Ryan T., Christensen, Steven T., van de Lagemaat, Jao, & Neale, Nathan R. Silicon Photoelectrode Thermodynamics and Hydrogen Evolution Kinetics Measured by Intensity-Modulated High-Frequency Resistivity Impedance Spectroscopy. United States. https://doi.org/10.1021/acs.jpclett.7b01311
Anderson, Nicholas C., Carroll, Gerard M., Pekarek, Ryan T., Christensen, Steven T., van de Lagemaat, Jao, and Neale, Nathan R. Thu . "Silicon Photoelectrode Thermodynamics and Hydrogen Evolution Kinetics Measured by Intensity-Modulated High-Frequency Resistivity Impedance Spectroscopy". United States. https://doi.org/10.1021/acs.jpclett.7b01311. https://www.osti.gov/servlets/purl/1402562.
@article{osti_1402562,
title = {Silicon Photoelectrode Thermodynamics and Hydrogen Evolution Kinetics Measured by Intensity-Modulated High-Frequency Resistivity Impedance Spectroscopy},
author = {Anderson, Nicholas C. and Carroll, Gerard M. and Pekarek, Ryan T. and Christensen, Steven T. and van de Lagemaat, Jao and Neale, Nathan R.},
abstractNote = {Here, we present an impedance technique based on light intensity-modulated high-frequency resistivity (IMHFR) that provides a new way to elucidate both the thermodynamics and kinetics in complex semiconductor photoelectrodes. We apply IMHFR to probe electrode interfacial energetics on oxide-modified semiconductor surfaces frequently used to improve the stability and efficiency of photoelectrochemical water splitting systems. Combined with current density-voltage measurements, the technique quantifies the overpotential for proton reduction relative to its thermodynamic potential in Si photocathodes coated with three oxides (SiOx, TiO2, and Al2O3) and a Pt catalyst. In pH 7 electrolyte, the flatband potentials of TiO2- and Al2O3-coated Si electrodes are negative relative to samples with native SiOx, indicating that SiOx is a better protective layer against oxidative electrochemical corrosion than ALD-deposited crystalline TiO2 or Al2O3. Adding a Pt catalyst to SiOx/Si minimizes proton reduction overpotential losses but at the expense of a reduction in available energy characterized by a more negative flatband potential relative to catalyst-free SiOx/Si.},
doi = {10.1021/acs.jpclett.7b01311},
journal = {Journal of Physical Chemistry Letters},
number = 21,
volume = 8,
place = {United States},
year = {2017},
month = {10}
}

Works referenced in this record:

Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen
journal, March 1995

  • Bard, Allen J.; Fox, Marye Anne
  • Accounts of Chemical Research, Vol. 28, Issue 3
  • DOI: 10.1021/ar00051a007

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Enabling Silicon for Solar-Fuel Production
journal, January 2014

  • Sun, Ke; Shen, Shaohua; Liang, Yongqi
  • Chemical Reviews, Vol. 114, Issue 17
  • DOI: 10.1021/cr300459q

Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance
journal, January 2016

  • Döscher, H.; Young, J. L.; Geisz, J. F.
  • Energy & Environmental Science, Vol. 9, Issue 1
  • DOI: 10.1039/C5EE03206G

A graded catalytic–protective layer for an efficient and stable water-splitting photocathode
journal, January 2017


Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures
journal, March 2017

  • Young, James L.; Steiner, Myles A.; Döscher, Henning
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.28

Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte
journal, January 2016

  • Young, J. L.; Steirer, K. X.; Dzara, M. J.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA07648J

Highly active oxide photocathode for photoelectrochemical water reduction
journal, May 2011

  • Paracchino, Adriana; Laporte, Vincent; Sivula, Kevin
  • Nature Materials, Vol. 10, Issue 6
  • DOI: 10.1038/nmat3017

Electrochemical Synthesis of p-Type CuFeO 2 Electrodes for Use in a Photoelectrochemical Cell
journal, July 2012

  • Read, Carrie G.; Park, Yiseul; Choi, Kyoung-Shin
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 14
  • DOI: 10.1021/jz300709t

All First Row Transition Metal Oxide Photoanode for Water Splitting Based on Cu 3 V 2 O 8
journal, January 2015

  • Seabold, Jason A.; Neale, Nathan R.
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm504327f

Synthesis and Characterization of CuV 2 O 6 and Cu 2 V 2 O 7 : Two Photoanode Candidates for Photoelectrochemical Water Oxidation
journal, November 2015

  • Guo, Wenlong; Chemelewski, William D.; Mabayoje, Oluwaniyi
  • The Journal of Physical Chemistry C, Vol. 119, Issue 49
  • DOI: 10.1021/acs.jpcc.5b07219

Solar fuel photoanodes prepared by inkjet printing of copper vanadates
journal, January 2016

  • Newhouse, P. F.; Boyd, D. A.; Shinde, A.
  • Journal of Materials Chemistry A, Vol. 4, Issue 19
  • DOI: 10.1039/C6TA01252C

Chromium doped copper vanadate photoanodes for water splitting
journal, July 2017


Solar Water Oxidation by Composite Catalyst/α-Fe 2 O 3 Photoanodes
journal, May 2009

  • Zhong, Diane K.; Sun, Jianwei; Inumaru, Hiroki
  • Journal of the American Chemical Society, Vol. 131, Issue 17
  • DOI: 10.1021/ja9016478

Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes
journal, March 2011

  • Sivula, Kevin; Le Formal, Florian; Grätzel, Michael
  • ChemSusChem, Vol. 4, Issue 4
  • DOI: 10.1002/cssc.201000416

Splitting water with rust: hematite photoelectrochemistry
journal, January 2012


Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
journal, July 2013

  • Abdi, Fatwa F.; Han, Lihao; Smets, Arno H. M.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3195

Efficient solar photoelectrolysis by nanoporous Mo:BiVO 4 through controlled electron transport
journal, January 2014

  • Seabold, Jason A.; Zhu, Kai; Neale, Nathan R.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 3
  • DOI: 10.1039/C3CP54356K

Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
journal, February 2014


Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces
journal, December 2016


Catalyst or spectator?
journal, November 2012


Dynamics of photogenerated holes in surface modified  -Fe2O3 photoanodes for solar water splitting
journal, July 2012

  • Barroso, M.; Mesa, C. A.; Pendlebury, S. R.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1118326109

Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes
journal, January 2012

  • Cummings, Charles Y.; Marken, Frank; Peter, Laurence M.
  • Chemical Communications, Vol. 48, Issue 14
  • DOI: 10.1039/c2cc16382a

Water Oxidation at Hematite Photoelectrodes: The Role of Surface States
journal, February 2012

  • Klahr, Benjamin; Gimenez, Sixto; Fabregat-Santiago, Francisco
  • Journal of the American Chemical Society, Vol. 134, Issue 9
  • DOI: 10.1021/ja210755h

Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes
journal, January 2012

  • Klahr, Benjamin; Gimenez, Sixto; Fabregat-Santiago, Francisco
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee21414h

Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with “Co–Pi”-Coated Hematite Electrodes
journal, September 2012

  • Klahr, Benjamin; Gimenez, Sixto; Fabregat-Santiago, Francisco
  • Journal of the American Chemical Society, Vol. 134, Issue 40
  • DOI: 10.1021/ja306427f

Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe 2 O 3 photoanodes
journal, January 2016

  • Carroll, Gerard M.; Gamelin, Daniel R.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA06978E

Photocurrent of BiVO 4 is limited by surface recombination, not surface catalysis
journal, January 2017

  • Zachäus, Carolin; Abdi, Fatwa F.; Peter, Laurence M.
  • Chemical Science, Vol. 8, Issue 5
  • DOI: 10.1039/C7SC00363C

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Semiconductor interfacial carrier dynamics via photoinduced electric fields
journal, November 2015


Semiconductor electrodes. IV. Electrochemical behavior of n- and p-type silicon electrodes in acetonitrile solutions
journal, February 1976

  • Laser, Daniel; Bard, Allen J.
  • The Journal of Physical Chemistry, Vol. 80, Issue 5
  • DOI: 10.1021/j100546a008

Determination of flat-band potentials of silicon electrodes in HF by means of ac resistance measurements
journal, September 1998


Enhanced Photoelectrochemical Water Oxidation on Bismuth Vanadate by Electrodeposition of Amorphous Titanium Dioxide
journal, August 2014

  • Eisenberg, David; Ahn, Hyun S.; Bard, Allen J.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja5082475

Role of TiO 2 Surface Passivation on Improving the Performance of p-InP Photocathodes
journal, February 2015

  • Lin, Yongjing; Kapadia, Rehan; Yang, Jinhui
  • The Journal of Physical Chemistry C, Vol. 119, Issue 5
  • DOI: 10.1021/jp5107313

Works referencing / citing this record:

Practical challenges in the development of photoelectrochemical solar fuels production
journal, January 2020

  • Spitler, Mark T.; Modestino, Miguel A.; Deutsch, Todd G.
  • Sustainable Energy & Fuels, Vol. 4, Issue 3
  • DOI: 10.1039/c9se00869a

Energetic effects of hybrid organic/inorganic interfacial architecture on nanoporous black silicon photoelectrodes
journal, January 2019

  • Pekarek, Ryan T.; Christensen, Steven T.; Liu, Jun
  • Sustainable Energy & Fuels, Vol. 3, Issue 7
  • DOI: 10.1039/c9se00032a

Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation
journal, January 2019

  • Han, HyukSu; Choi, Heechae; Mhin, Sungwook
  • Energy & Environmental Science, Vol. 12, Issue 8
  • DOI: 10.1039/c9ee00950g