DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elemental composition of organic aerosol: The gap between ambient and laboratory measurements

Abstract

Abstract A large data set including surface, aircraft, and laboratory observations of the atomic oxygen‐to‐carbon (O:C) and hydrogen‐to‐carbon (H:C) ratios of organic aerosol (OA) is synthesized and corrected using a recently reported method. The whole data set indicates a wide range of OA oxidation and a trajectory in the Van Krevelen diagram, characterized by a slope of −0.6, with variation across campaigns. We show that laboratory OA including both source and aged types explains some of the key differences in OA observed across different environments. However, the laboratory data typically fall below the mean line defined by ambient observations, and little laboratory data extend to the highest O:C ratios commonly observed in remote conditions. OA having both high O:C and high H:C are required to bridge the gaps. Aqueous‐phase oxidation may produce such OA, but experiments under realistic ambient conditions are needed to constrain the relative importance of this pathway.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [6];  [3];  [3];  [7];  [8];  [9];  [10];  [10];  [11]
  1. Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA, Now at State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering Peking University Beijing China
  2. Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA
  3. CIRES and Department of Chemistry and Biochemistry University of Colorado Boulder Boulder Colorado USA
  4. Aerodyne Research, Inc. Billerica Massachusetts USA
  5. Department of Environmental Toxicology University of California Davis California USA
  6. Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy Peking University Shenzhen Graduate School Shenzhen China
  7. Leibniz Institute for Tropospheric Research Leipzig Germany
  8. School of Engineering and Applied Sciences NHarvard University Cambridge Massachusetts USA, Now at Earth Observatory of Singapore Nanyang Technological University Singapore
  9. School of Engineering and Applied Sciences NHarvard University Cambridge Massachusetts USA
  10. Department of Chemistry University of Toronto Toronto Ontario Canada
  11. Air Quality Research Division Environment Canada Toronto Ontario Canada
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1402127
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Name: Geophysical Research Letters Journal Volume: 42 Journal Issue: 10; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English

Citation Formats

Chen, Qi, Heald, Colette L., Jimenez, Jose L., Canagaratna, Manjula R., Zhang, Qi, He, Ling‐Yan, Huang, Xiao‐Feng, Campuzano‐Jost, Pedro, Palm, Brett B., Poulain, Laurent, Kuwata, Mikinori, Martin, Scot T., Abbatt, Jonathan P. D., Lee, Alex K. Y., and Liggio, John. Elemental composition of organic aerosol: The gap between ambient and laboratory measurements. United States: N. p., 2015. Web. doi:10.1002/2015GL063693.
Chen, Qi, Heald, Colette L., Jimenez, Jose L., Canagaratna, Manjula R., Zhang, Qi, He, Ling‐Yan, Huang, Xiao‐Feng, Campuzano‐Jost, Pedro, Palm, Brett B., Poulain, Laurent, Kuwata, Mikinori, Martin, Scot T., Abbatt, Jonathan P. D., Lee, Alex K. Y., & Liggio, John. Elemental composition of organic aerosol: The gap between ambient and laboratory measurements. United States. https://doi.org/10.1002/2015GL063693
Chen, Qi, Heald, Colette L., Jimenez, Jose L., Canagaratna, Manjula R., Zhang, Qi, He, Ling‐Yan, Huang, Xiao‐Feng, Campuzano‐Jost, Pedro, Palm, Brett B., Poulain, Laurent, Kuwata, Mikinori, Martin, Scot T., Abbatt, Jonathan P. D., Lee, Alex K. Y., and Liggio, John. Fri . "Elemental composition of organic aerosol: The gap between ambient and laboratory measurements". United States. https://doi.org/10.1002/2015GL063693.
@article{osti_1402127,
title = {Elemental composition of organic aerosol: The gap between ambient and laboratory measurements},
author = {Chen, Qi and Heald, Colette L. and Jimenez, Jose L. and Canagaratna, Manjula R. and Zhang, Qi and He, Ling‐Yan and Huang, Xiao‐Feng and Campuzano‐Jost, Pedro and Palm, Brett B. and Poulain, Laurent and Kuwata, Mikinori and Martin, Scot T. and Abbatt, Jonathan P. D. and Lee, Alex K. Y. and Liggio, John},
abstractNote = {Abstract A large data set including surface, aircraft, and laboratory observations of the atomic oxygen‐to‐carbon (O:C) and hydrogen‐to‐carbon (H:C) ratios of organic aerosol (OA) is synthesized and corrected using a recently reported method. The whole data set indicates a wide range of OA oxidation and a trajectory in the Van Krevelen diagram, characterized by a slope of −0.6, with variation across campaigns. We show that laboratory OA including both source and aged types explains some of the key differences in OA observed across different environments. However, the laboratory data typically fall below the mean line defined by ambient observations, and little laboratory data extend to the highest O:C ratios commonly observed in remote conditions. OA having both high O:C and high H:C are required to bridge the gaps. Aqueous‐phase oxidation may produce such OA, but experiments under realistic ambient conditions are needed to constrain the relative importance of this pathway.},
doi = {10.1002/2015GL063693},
journal = {Geophysical Research Letters},
number = 10,
volume = 42,
place = {United States},
year = {Fri May 22 00:00:00 EDT 2015},
month = {Fri May 22 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/2015GL063693

Citation Metrics:
Cited by: 71 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Density and elemental ratios of secondary organic aerosol: Application of a density prediction method
journal, April 2013


Detecting high contributions of primary organic matter to marine aerosol: A case study: PRIMARY ORGANIC MARINE AEROSOL
journal, January 2011

  • Ovadnevaite, Jurgita; O'Dowd, Colin; Dall'Osto, Manuel
  • Geophysical Research Letters, Vol. 38, Issue 2
  • DOI: 10.1029/2010GL046083

Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals
journal, August 2010

  • George, I. J.; Abbatt, J. P. D.
  • Nature Chemistry, Vol. 2, Issue 9
  • DOI: 10.1038/nchem.806

Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer
journal, January 2010

  • Chhabra, P. S.; Flagan, R. C.; Seinfeld, J. H.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 9
  • DOI: 10.5194/acp-10-4111-2010

Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging
journal, March 2007


Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products
journal, January 2010

  • Schwartz, R. E.; Russell, L. M.; Sjostedt, S. J.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 11
  • DOI: 10.5194/acp-10-5075-2010

Aqueous OH oxidation of ambient organic aerosol and cloud water organics: Formation of highly oxidized products: AQUEOUS OXIDATION OF AMBIENT ORGANICS
journal, June 2011

  • Lee, Alex K. Y.; Herckes, P.; Leaitch, W. R.
  • Geophysical Research Letters, Vol. 38, Issue 11
  • DOI: 10.1029/2011GL047439

Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin
journal, January 2009

  • Chen, Q.; Farmer, D. K.; Schneider, J.
  • Geophysical Research Letters, Vol. 36, Issue 20
  • DOI: 10.1029/2009GL039880

Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies
journal, January 2011

  • Ervens, B.; Turpin, B. J.; Weber, R. J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 21
  • DOI: 10.5194/acp-11-11069-2011

A global perspective on aerosol from low-volatility organic compounds
journal, January 2010


Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass
journal, July 2001


Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles
journal, January 2014


Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013
journal, January 2014

  • Ortega, J.; Turnipseed, A.; Guenther, A. B.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 12
  • DOI: 10.5194/acp-14-6345-2014

Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol
journal, April 2014

  • Zhang, X.; Cappa, C. D.; Jathar, S. H.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 16
  • DOI: 10.1073/pnas.1404727111

Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO
journal, January 2010

  • DeCarlo, P. F.; Ulbrich, I. M.; Crounse, J.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 12
  • DOI: 10.5194/acp-10-5257-2010

Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3
journal, January 2013

  • Ortega, A. M.; Day, D. A.; Cubison, M. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 22
  • DOI: 10.5194/acp-13-11551-2013

A simplified description of the evolution of organic aerosol composition in the atmosphere: VAN KREVELEN DIAGRAM OF ORGANIC AEROSOL
journal, April 2010

  • Heald, C. L.; Kroll, J. H.; Jimenez, J. L.
  • Geophysical Research Letters, Vol. 37, Issue 8
  • DOI: 10.1029/2010GL042737

Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols
journal, January 2008

  • Fu, Tzung-May; Jacob, Daniel J.; Wittrock, Folkard
  • Journal of Geophysical Research, Vol. 113, Issue D15
  • DOI: 10.1029/2007JD009505

Physical state and acidity of inorganic sulfate can regulate the production of secondary organic material from isoprene photooxidation products
journal, January 2015

  • Kuwata, Mikinori; Liu, Yingjun; McKinney, Karena
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 8
  • DOI: 10.1039/C4CP04942J

O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry
journal, June 2008

  • Aiken, Allison C.; DeCarlo, Peter F.; Kroll, Jesse H.
  • Environmental Science & Technology, Vol. 42, Issue 12
  • DOI: 10.1021/es703009q

Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz
journal, January 2011


Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol
journal, January 2009

  • Kroll, Jesse H.; Smith, Jared D.; Che, Dung L.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 36
  • DOI: 10.1039/b905289e

Aqueous chemistry and its role in secondary organic aerosol (SOA) formation
journal, January 2010


Fine-mode organic mass concentrations and sources in the Amazonian wet season (AMAZE-08)
journal, January 2014

  • Chen, Q.; Farmer, D. K.; Rizzo, L. V.
  • Atmospheric Chemistry and Physics Discussions, Vol. 14, Issue 11
  • DOI: 10.5194/acpd-14-16151-2014

The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition
journal, January 2011

  • Docherty, K. S.; Aiken, A. C.; Huffman, J. A.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12387-2011

Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest
journal, January 2011

  • Robinson, N. H.; Hamilton, J. F.; Allan, J. D.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 3
  • DOI: 10.5194/acp-11-1039-2011

Changes in organic aerosol composition with aging inferred from aerosol mass spectra
journal, January 2011

  • Ng, N. L.; Canagaratna, M. R.; Jimenez, J. L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 13
  • DOI: 10.5194/acp-11-6465-2011

Secondary Organic Aerosol Formation from Intermediate-Volatility Organic Compounds: Cyclic, Linear, and Branched Alkanes
journal, August 2012

  • Tkacik, Daniel S.; Presto, Albert A.; Donahue, Neil M.
  • Environmental Science & Technology, Vol. 46, Issue 16
  • DOI: 10.1021/es301112c

Reactive intermediates revealed in secondary organic aerosol formation from isoprene
journal, December 2009

  • Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0911114107

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Size-resolved aerosol chemistry on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer during INTEX-B
journal, January 2009

  • Sun, Y.; Zhang, Q.; Macdonald, A. M.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 9
  • DOI: 10.5194/acp-9-3095-2009

Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy
journal, January 2012

  • Saarikoski, S.; Carbone, S.; Decesari, S.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 18
  • DOI: 10.5194/acp-12-8401-2012

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol
journal, January 2011

  • Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.
  • Nature Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/nchem.948

Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints
journal, June 2011

  • Chen, Qi; Liu, Yingjun; Donahue, Neil M.
  • Environmental Science & Technology, Vol. 45, Issue 11
  • DOI: 10.1021/es104398s

Using Elemental Ratios to Predict the Density of Organic Material Composed of Carbon, Hydrogen, and Oxygen
journal, December 2011

  • Kuwata, Mikinori; Zorn, Soeren R.; Martin, Scot T.
  • Environmental Science & Technology, Vol. 46, Issue 2
  • DOI: 10.1021/es202525q

A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

Source attribution of Bornean air masses by back trajectory analysis during the OP3 project
journal, January 2011

  • Robinson, N. H.; Newton, H. M.; Allan, J. D.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 18
  • DOI: 10.5194/acp-11-9605-2011

Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected
journal, January 2006

  • Volkamer, Rainer; Jimenez, Jose L.; San Martini, Federico
  • Geophysical Research Letters, Vol. 33, Issue 17
  • DOI: 10.1029/2006GL026899

Aerosol Chemical Composition in Cloud Events by High Resolution Time-of-Flight Aerosol Mass Spectrometry
journal, February 2013

  • Hao, Liqing; Romakkaniemi, Sami; Kortelainen, Aki
  • Environmental Science & Technology, Vol. 47, Issue 6
  • DOI: 10.1021/es302889w

Phase changes of ambient particles in the Southern Great Plains of Oklahoma
journal, January 2008

  • Martin, Scot T.; Rosenoern, Thomas; Chen, Qi
  • Geophysical Research Letters, Vol. 35, Issue 22
  • DOI: 10.1029/2008GL035650

Loading-dependent elemental composition of α-pinene SOA particles
journal, January 2009

  • Shilling, J. E.; Chen, Q.; King, S. M.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 3
  • DOI: 10.5194/acp-9-771-2009

Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds
journal, November 2011

  • Lin, Ying-Hsuan; Zhang, Zhenfa; Docherty, Kenneth S.
  • Environmental Science & Technology, Vol. 46, Issue 1
  • DOI: 10.1021/es202554c

Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution
journal, January 2014

  • Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 19
  • DOI: 10.5194/acp-14-10773-2014

Use and misuse of the reduced major axis for line-fitting
journal, November 2009

  • Smith, Richard J.
  • American Journal of Physical Anthropology, Vol. 140, Issue 3
  • DOI: 10.1002/ajpa.21090

Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model
journal, January 2011


Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications
journal, January 2015

  • Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-253-2015

Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh-resolution FT-ICR mass spectrometry
journal, January 2013

  • Zhao, Y.; Hallar, A. G.; Mazzoleni, L. R.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 24
  • DOI: 10.5194/acp-13-12343-2013

Global modeling of SOA: the use of different mechanisms for aqueous-phase formation
journal, January 2014

  • Lin, G.; Sillman, S.; Penner, J. E.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 11
  • DOI: 10.5194/acp-14-5451-2014

Primary and secondary organic aerosols in Fresno, California during wintertime: Results from high resolution aerosol mass spectrometry: POA AND SOA IN FRESNO IN WINTER
journal, October 2012

  • Ge, Xinlei; Setyan, Ari; Sun, Yele
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D19
  • DOI: 10.1029/2012JD018026