skip to main content

DOE PAGESDOE PAGES

Title: Pressure-tuning of bond-directional exchange interactions and magnetic frustration in hyperhoneycomb iridate β-Li 2IrO 3

Here, we explore the response of Ir 5d orbitals to pressure in β-Li 2IrO 3, a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5d orbitals, pushes β-Li 2IrO 3 further away from the pure J eff = 1/2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows a highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.
Authors:
 [1] ;  [2] ;  [2] ;  [3] ;  [4] ;  [5] ;  [2] ;  [6] ;  [6] ;  [7] ;  [8] ;  [9] ;  [10] ;  [6] ;  [11] ;  [11] ;  [12]
  1. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Argonne National Lab. (ANL), Argonne, IL (United States); Univ. College London, London (United Kingdom)
  2. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  3. Argonne National Lab. (ANL), Argonne, IL (United States); Center for High Pressure Science & Technology Advanced Research (HPSTAR), Shanghai (China); Chinese Academy of Sciences (CAS), Beijing (China)
  4. Argonne National Lab. (ANL), Argonne, IL (United States); Brazilian Synchrotron Light Lab. (LNLS), Campinas (Brazil)
  5. Argonne National Lab. (ANL), Argonne, IL (United States); Washington Univ., St. Louis, MO (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
  6. Washington Univ., St. Louis, MO (United States)
  7. Univ. of Toronto, Toronto, ON (Canada)
  8. Univ. of Toronto, Toronto, ON (Canada); Canadian Institute for Advanced Research/Quantum Materials Program, Toronto, ON (Canada)
  9. Center for High Pressure Science & Technology Advanced Research (HPSTAR), Shanghai (China); Carnegie Inst. of Washington, Argonne, IL (United States)
  10. Argonne National Lab. (ANL), Argonne, IL (United States); Northern Illinois Univ., DeKalb, IL (United States)
  11. Max Planck Institute for Solid State Research, Stuttgart (Germany); Univ. of Tokyo, Tokyo (Japan)
  12. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Report Number(s):
BNL-114421-2017-JA
Journal ID: ISSN 0163-1829; 135629; TRN: US1702869
Grant/Contract Number:
AC02-06CH11357; SC0012704; 1047478; FG02-03ER46097; NA0001974; FG02-99ER45775
Type:
Accepted Manuscript
Journal Name:
Physical Review, B: Condensed Matter
Additional Journal Information:
Journal Volume: 96; Journal Issue: 14; Journal ID: ISSN 0163-1829
Publisher:
American Physical Society (APS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
Argonne National Laboratory, Advanced Photon Source; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22), Materials Sciences and Engineering Division; USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1402077
Alternate Identifier(s):
OSTI ID: 1398826; OSTI ID: 1412661

Veiga, L. S. I., Etter, M., Glazyrin, K., Sun, F., Escanhoela, Jr., C. A., Fabbris, G., Mardegan, J. R. L., Malavi, P. S., Deng, Y., Stavropoulos, P. P., Kee, H. -Y., Yang, W. G., van Veenendaal, M., Schilling, J. S., Takayama, T., Takagi, H., and Haskel, D.. Pressure-tuning of bond-directional exchange interactions and magnetic frustration in hyperhoneycomb iridate β-Li2IrO3. United States: N. p., Web. doi:10.1103/PhysRevB.96.140402.
Veiga, L. S. I., Etter, M., Glazyrin, K., Sun, F., Escanhoela, Jr., C. A., Fabbris, G., Mardegan, J. R. L., Malavi, P. S., Deng, Y., Stavropoulos, P. P., Kee, H. -Y., Yang, W. G., van Veenendaal, M., Schilling, J. S., Takayama, T., Takagi, H., & Haskel, D.. Pressure-tuning of bond-directional exchange interactions and magnetic frustration in hyperhoneycomb iridate β-Li2IrO3. United States. doi:10.1103/PhysRevB.96.140402.
Veiga, L. S. I., Etter, M., Glazyrin, K., Sun, F., Escanhoela, Jr., C. A., Fabbris, G., Mardegan, J. R. L., Malavi, P. S., Deng, Y., Stavropoulos, P. P., Kee, H. -Y., Yang, W. G., van Veenendaal, M., Schilling, J. S., Takayama, T., Takagi, H., and Haskel, D.. 2017. "Pressure-tuning of bond-directional exchange interactions and magnetic frustration in hyperhoneycomb iridate β-Li2IrO3". United States. doi:10.1103/PhysRevB.96.140402. https://www.osti.gov/servlets/purl/1402077.
@article{osti_1402077,
title = {Pressure-tuning of bond-directional exchange interactions and magnetic frustration in hyperhoneycomb iridate β-Li2IrO3},
author = {Veiga, L. S. I. and Etter, M. and Glazyrin, K. and Sun, F. and Escanhoela, Jr., C. A. and Fabbris, G. and Mardegan, J. R. L. and Malavi, P. S. and Deng, Y. and Stavropoulos, P. P. and Kee, H. -Y. and Yang, W. G. and van Veenendaal, M. and Schilling, J. S. and Takayama, T. and Takagi, H. and Haskel, D.},
abstractNote = {Here, we explore the response of Ir 5d orbitals to pressure in β-Li2IrO3, a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5d orbitals, pushes β-Li2IrO3 further away from the pure Jeff = 1/2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows a highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.},
doi = {10.1103/PhysRevB.96.140402},
journal = {Physical Review, B: Condensed Matter},
number = 14,
volume = 96,
place = {United States},
year = {2017},
month = {10}
}